- Trust Region Policy Optimization (TRPO) has an objective function and a constraint. It hence requires a second order optimization such as a conjugate gradient. SGD and Adam are not applicable in TRPO.
- The entropy term helps in regularization. It allows the agent to explore more.
- We clip the policy ratio to limit the amount by which one update step will change the policy. If this clipping parameter epsilon is large, the policy can change drastically in each update, which can result in a sub-optimal policy, as the agent's policy is noisier and has too many fluctuations.
- The action is bounded between a negative and a positive value, and so the tanh activation function is used for mu. For sigma, the softplus is used as sigma and is always positive. The tanh function cannot be used for sigma, as tanh can result in negative values for sigma, which is meaningless!
- Reward...
Germany
Slovakia
Canada
Brazil
Singapore
Hungary
Philippines
Mexico
Thailand
Ukraine
Luxembourg
Estonia
Lithuania
Norway
Chile
United States
Great Britain
India
Spain
South Korea
Ecuador
Colombia
Taiwan
Switzerland
Indonesia
Cyprus
Denmark
Finland
Poland
Malta
Czechia
New Zealand
Austria
Turkey
France
Sweden
Italy
Egypt
Belgium
Portugal
Slovenia
Ireland
Romania
Greece
Argentina
Malaysia
South Africa
Netherlands
Bulgaria
Latvia
Australia
Japan
Russia