Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Applying Math with Python

You're reading from   Applying Math with Python Practical recipes for solving computational math problems using Python programming and its libraries

Arrow left icon
Product type Paperback
Published in Jul 2020
Publisher Packt
ISBN-13 9781838989750
Length 358 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Sam Morley Sam Morley
Author Profile Icon Sam Morley
Sam Morley
Sam Morley Sam Morley
Author Profile Icon Sam Morley
Sam Morley
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. Basic Packages, Functions, and Concepts 2. Mathematical Plotting with Matplotlib FREE CHAPTER 3. Calculus and Differential Equations 4. Working with Randomness and Probability 5. Working with Trees and Networks 6. Working with Data and Statistics 7. Regression and Forecasting 8. Geometric Problems 9. Finding Optimal Solutions 10. Miscellaneous Topics 11. Other Books You May Enjoy

Matrices

NumPy arrays also serve as matrices, which are fundamental in mathematics and computational programming. A matrix is simply a two-dimensional array. Matrices are central in many applications, such as geometric transformations and simultaneous equations, but also appear as useful tools in other areas such a statistics. Matrices themselves are only distinctive (compared to any other array) once we equip them with matrix arithmetic. Matrices have element-wise addition and subtraction operations, just as for NumPy arrays, a third operation called scalar multiplication, where we multiply every element of the matrix by a constant number, and a different notion of matrix multiplication. Matrix multiplication is fundamentally different from other notions of multiplication, as we will see later.

One of the most important attributes of a matrix is its shape, defined exactly as for NumPy arrays. A matrix with m rows and n columns is usuallydescribed as an m Ă— n matrix...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image