In this chapter, we started off with prototypical networks, and we saw how a prototypical network computes the class prototype using the embedding function and predicts the class label of the query set by comparing the Euclidean distance between the class prototype and query set embeddings. Following this, we experimented with a prototypical network by performing classification on an omniglot dataset. Then, we learned about the Gaussian prototypical network, which, along with the embeddings, also uses the covariance matrix to compute the class prototype. Following this, we explored semi-prototypical networks, which are used to handle semi-supervised classes. In the next chapter, we will learn about relation and matching networks.
Germany
Slovakia
Canada
Brazil
Singapore
Hungary
Philippines
Mexico
Thailand
Ukraine
Luxembourg
Estonia
Lithuania
Norway
Chile
United States
Great Britain
India
Spain
South Korea
Ecuador
Colombia
Taiwan
Switzerland
Indonesia
Cyprus
Denmark
Finland
Poland
Malta
Czechia
New Zealand
Austria
Turkey
France
Sweden
Italy
Egypt
Belgium
Portugal
Slovenia
Ireland
Romania
Greece
Argentina
Malaysia
South Africa
Netherlands
Bulgaria
Latvia
Australia
Japan
Russia