Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Machine Learning Automation with TPOT

You're reading from   Machine Learning Automation with TPOT Build, validate, and deploy fully automated machine learning models with Python

Arrow left icon
Product type Paperback
Published in May 2021
Publisher Packt
ISBN-13 9781800567887
Length 270 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Dario Radečić Dario Radečić
Author Profile Icon Dario Radečić
Dario Radečić
Arrow right icon
View More author details
Toc

Table of Contents (14) Chapters Close

Preface 1. Section 1: Introducing Machine Learning and the Idea of Automation
2. Chapter 1: Machine Learning and the Idea of Automation FREE CHAPTER 3. Section 2: TPOT – Practical Classification and Regression
4. Chapter 2: Deep Dive into TPOT 5. Chapter 3: Exploring Regression with TPOT 6. Chapter 4: Exploring Classification with TPOT 7. Chapter 5: Parallel Training with TPOT and Dask 8. Section 3: Advanced Examples and Neural Networks in TPOT
9. Chapter 6: Getting Started with Deep Learning: Crash Course in Neural Networks 10. Chapter 7: Neural Network Classifier with TPOT 11. Chapter 8: TPOT Model Deployment 12. Chapter 9: Using the Deployed TPOT Model in Production 13. Other Books You May Enjoy

Best practices for deploying automated models

The deployment of automated models is more or less identical to the deployment of your normal machine learning models. It boils down to training the model first and then saving the model in some format. In the case of normal machine learning models, you could easily save the model to a .model or .h5 file. There's no reason not to do the same with TPOT models.

If you remember from previous chapters, TPOT can export the best pipeline to a Python file so this pipeline can be used to train the model if it isn't trained already, and the model can be saved afterward. If the model is already trained, only the prediction is obtained.

The check for whether a model has been trained or not can be made by checking whether a file exists or not. If a model file exists, we can assume the model was trained, so we can load it and make a prediction. Otherwise, the model should be trained and saved first, and only then can the prediction be...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image