Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Machine Learning for Finance

You're reading from   Machine Learning for Finance Principles and practice for financial insiders

Arrow left icon
Product type Paperback
Published in May 2019
Publisher Packt
ISBN-13 9781789136364
Length 456 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Jannes Klaas Jannes Klaas
Author Profile Icon Jannes Klaas
Jannes Klaas
James Le James Le
Author Profile Icon James Le
James Le
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Machine Learning for Finance
Contributors
Preface
Other Books You May Enjoy
1. Neural Networks and Gradient-Based Optimization 2. Applying Machine Learning to Structured Data FREE CHAPTER 3. Utilizing Computer Vision 4. Understanding Time Series 5. Parsing Textual Data with Natural Language Processing 6. Using Generative Models 7. Reinforcement Learning for Financial Markets 8. Privacy, Debugging, and Launching Your Products 9. Fighting Bias 10. Bayesian Inference and Probabilistic Programming Index

Exercises


Now we're at the end of the chapter, why not try some of the following exercises? You'll find guides on how to complete them all throughout this chapter:

  • A good trick is to use LSTMs on top of one-dimensional convolution, as one-dimensional convolution can go over large sequences while using fewer parameters. Try to implement an architecture that first uses a few convolutional and pooling layers and then a few LSTM layers. Try it out on the web traffic dataset. Then try adding (recurrent) dropout. Can you beat the LSTM model?

  • Add uncertainty to your web traffic forecasts. To do this, remember to run your model with dropout turned on at inference time. You will obtain multiple forecasts for one time step. Think about what this would mean in the context of trading and stock prices.

  • Visit the Kaggle datasets page and search for time series data. Make a forecasting model. This involves feature engineering with autocorrelation and Fourier transformation, picking the right model from the...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image