Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
C++17 STL Cookbook

You're reading from   C++17 STL Cookbook Discover the latest enhancements to functional programming and lambda expressions

Arrow left icon
Product type Paperback
Published in Jun 2017
Publisher Packt
ISBN-13 9781787120495
Length 532 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Jacek Galowicz Jacek Galowicz
Author Profile Icon Jacek Galowicz
Jacek Galowicz
Arrow right icon
View More author details
Toc

Table of Contents (11) Chapters Close

Preface 1. The New C++17 Features FREE CHAPTER 2. STL Containers 3. Iterators 4. Lambda Expressions 5. STL Algorithm Basics 6. Advanced Use of STL Algorithms 7. Strings, Stream Classes, and Regular Expressions 8. Utility Classes 9. Parallelism and Concurrency 10. Filesystem

Profiting from the new bracket initializer rules

C++11 came with the new brace initializer syntax {}. Its purpose was to allow for aggregate initialization, but also for usual constructor calling. Unfortunately, it was too easy to express the wrong thing when combining this syntax with the auto variable type. C++17 comes with an enhanced set of initializer rules. In this recipe, we will clarify how to correctly initialize variables with which syntax in C++17.

How to do it...

Variables are initialized in one step. Using the initializer syntax, there are two different situations:

  • Using the brace initializer syntax without auto type deduction:
       // Three identical ways to initialize an int:
int x1 = 1;
int x2 {1};
int x3 (1);

std::vector<int> v1 {1, 2, 3}; // Vector with three ints: 1, 2, 3
std::vector<int> v2 = {1, 2, 3}; // same here
std::vector<int> v3 (10, 20); // Vector with 10 ints,
// each have value 20
  • Using the brace initializer syntax with auto type deduction:
       auto v   {1};         // v is int
auto w {1, 2}; // error: only single elements in direct
// auto initialization allowed! (this is new)
auto x = {1}; // x is std::initializer_list<int>
auto y = {1, 2}; // y is std::initializer_list<int>
auto z = {1, 2, 3.0}; // error: Cannot deduce element type

 

How it works...

Without auto type deduction, there's not much to be surprised about in the brace {} operator, at least, when initializing regular types. When initializing containers such as std::vector, std::list, and so on, a brace initializer will match the std::initializer_list constructor of that container class. It does this in a greedy manner, which means that it is not possible to match non-aggregate constructors (non-aggregate constructors are usual constructors in contrast to the ones that accept an initializer list).

std::vector, for example, provides a specific non-aggregate constructor, which fills arbitrarily many items with the same value: std::vector<int> v (N, value). When writing std::vector<int> v {N, value}, the initializer_list constructor is chosen, which will initialize the vector with two items: N and value. This is a special pitfall one should know about.

One nice detail about the {} operator compared to constructor calling using normal () parentheses is that they do no implicit type conversions: int x (1.2); and int x = 1.2; will initialize x to value 1 by silently rounding down the floating point value and converting it to int. int x {1.2};, in contrast, will not compile because it wants to exactly match the constructor type.

One can controversially argue about which initialization style is the best one.
Fans of the bracket initialization style say that using brackets makes it very explicit, that the variable is initialized with a constructor call, and that this code line is not reinitializing anything. Furthermore, using {} brackets will select the only matching constructor, while initializer lines using () parentheses try to match the closest constructor and even do type conversion in order to match.

The additional rule introduced in C++17 affects the initialization with auto type deduction--while C++11 would correctly make the type of the variable auto x {123}; an std::initializer_list<int> with only one element, this is seldom what we would want. C++17 would make the same variable an int.

Rule of thumb:

  • auto var_name {one_element}; deduces var_name to be of the same type as one_element
  • auto var_name {element1, element2, ...}; is invalid and does not compile
  • auto var_name = {element1, element2, ...}; deduces to an std::initializer_list<T> with T being of the same type as all the elements in the list

C++17 has made it harder to accidentally define an initializer list.

Trying this out with different compilers in C++11/C++14 mode will show that some compilers actually deduce auto x {123}; to an int, while others deduce it to std::initializer_list<int>. Writing code like this can lead to problems regarding portability!
You have been reading a chapter from
C++17 STL Cookbook
Published in: Jun 2017
Publisher: Packt
ISBN-13: 9781787120495
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image