Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Intelligent IoT Projects in 7 Days
Intelligent IoT Projects in 7 Days

Intelligent IoT Projects in 7 Days: Build exciting projects using smart devices

eBook
$24.99 $35.99
Paperback
$43.99
Subscription
Free Trial
Renews at $19.99p/m

What do you get with a Packt Subscription?

Free for first 7 days. $19.99 p/m after that. Cancel any time!
Product feature icon Unlimited ad-free access to the largest independent learning library in tech. Access this title and thousands more!
Product feature icon 50+ new titles added per month, including many first-to-market concepts and exclusive early access to books as they are being written.
Product feature icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Product feature icon Thousands of reference materials covering every tech concept you need to stay up to date.
Subscribe now
View plans & pricing
Table of content icon View table of contents Preview book icon Preview Book

Intelligent IoT Projects in 7 Days

A Simple Smart Gardening System

Gardening is a nice activity. It needs care to keep a crop growing well. It is not possible to monitor and tend to a garden 24 hours a day, so we need a smart gardening system that can monitor and tend to the garden as we want it. This chapter will help you explore existing gardening systems and build your own simple smart gardening system.

In this chapter, we will cover the following topics:

  • Introducing smart gardening systems
  • Exploring gardening system platforms
  • Watering your garden and farm
  • Sensor devices for a smart gardening system
  • Watering your garden and farm
  • Building a smart gardening system

Let's get started!

Introducing smart gardening system

A gardening system is a system used to practice growing and cultivating plants as a part of horticulture. A gardening system is usually developed and implemented as a manual operation. An automated gardening system is designed to enable us to manage gardening, including monitoring moisture, temperature, and humidity.

In general, we can build a smart gardening system based on the high-level architecture that is shown in the following figure:

The following is a list of components to build a smart gardening system:

  • Sensors: Corresponding to your case, you need sensor devices to measure the garden's environment and condition. Capturing physical objects to digital form enables us to perform computing and processing.
  • MCU board with network module: The goal of MCU is to process all data that is acquired from sensors. Most MCU boards have limited computation, so we need to send sensor data to a server for further computation. To enable us to send data, the MCU board should be attached to a network module, either Ethernet or wireless.
  • Gateway: This is optional since some MCU boards can communicate with a server directly without modifying the protocol format. If a network module has the capability to deliver data over a primitive protocol, the functioning of gateway is necessary because a gateway can translate one protocol format to another protocol format.
  • Server: This is a center computation. Most servers have high-end hardware so heavy computation can be addressed.

This architecture is an ideal condition. In a real project, you may integrate an MCU board and server in one box. For instance, you can use a Raspberry Pi or BeagleBoard. These are a mini computers that you can deploy libraries to with respect to your case.

Exploring gardening system platforms

In this section, we will explore some gardening systems that could be used with our board, such as Arduino and Raspberry Pi. Some manufacturers provide kits that you can use directly in your project.

We will review three gardening system platforms that you may fit with your case.

Open Garden shield for Arduino

Open Garden shield for Arduino is manufactured by Cooking Hacks. This shield provides I/O connectors for gardening and farming sensors. It also includes an RF module with 433 MHz frequency. For further information about this shield, you can visit the official website at https://www.cooking-hacks.com/open-garden-shield-for-arduino. You can see this shield here:

Cooking Hacks provides a complete kit that you can use with Arduino directly. Currently, there are three kits. Each kit has unique features, including sensors and tools. The following is a list of Open Garden kits:

You can see a sample Open Garden kit for indoor use here:

Grove Smart Plant Care kit for Arduino

SeeedStudio has popular products called Grove. It makes it easier for you to connect your board to various sensor and actuator devices. Currently, SeeedStudio provides the Grove Smart Plant kit for Arduino. This kit consists of temperature, humidity, soil moisture, and illumination intensity sensors. To connect these sensors, the kit provides a Grove Base shield that you can attach to Arduino.

You can buy this kit on the official website, https://www.seeedstudio.com/Grove-Smart-Plant-Care-Kit-for-Arduino-p-2528.html. One type of Grove smart plant care kit for Arduino is shown here:

EcoDuino

EcoDuino is a gardening kit from DFRobot. This kit consists of an MCU board and sensors. The board also provides an RF module breakout in an XBee breakout model. It enables the board to communicate with other platforms. The kit comes with soil moisture, temperature, and humidity (DHT11) sensors. If you're interested in this kit, you can buy it from this website: https://www.dfrobot.com/product-641.html.

The EcoDuino kit is shown in the following image:

Sensor devices for a smart gardening system

To build a smart gardening system, we need some sensors related to gardening and farming. In this section, we will review the main sensors that are used in gardening and farming. Soil moisture, temperature, and humidity are three parameters that we can use to build our smart gardening system.

Let's explore!

Soil moisture sensor

One of the parameters of gardening is soil moisture. We should measure soil moisture to ensure our plant grows well. There are many options when it comes to soil moisture sensors. You can use the SparkFun Soil Moisture Sensor, for example. You can find this module at https://www.sparkfun.com/products/13322 .

You can see the SparkFun Soil Moisture Sensor in the following image:

You can use other soil moisture sensors from cheap manufacturers in China. You can order them from Alibaba or Aliexpress.

To read soil moisture values, we can use analog I/O. To use analog I/O, you should be familiar with the following Sketch APIs:

  • analogRead() is for reading analog data from an analog pin on Arduino
  • analogWrite() is for writing analog data to an analog pin on Arduino

For demonstration, we'll connect an Arduino board to the SparkFun Soil Moisture sensor. The following is the wiring used:

  • VCC is connected to 5V on the Arduino
  • GND is connected to GND on the Arduino
  • SIG is connected to A0 on the Arduino

A complete wiring can be seen in the following figure:

Now you can open the Arduino software. If you haven't installed it yet, you can download and install the tool from https://www.arduino.cc. Once done, you can write a Sketch program. Create this script:

void setup() { 
Serial.begin(9600);
}

void loop() {
int val;
val = analogRead(A0);

Serial.print("Soil moisture: ");
Serial.print(val);

delay(3000);
}

The program starts by initializing a Serial object with a baud rate of 9600. In a looping program, we read soil moisture levels using the analogRead() method. Then the measurement is printed to the serial port.

Save this Sketch file and upload the program to the Arduino board. To see the output data, you can use the serial monitor in the Arduino software. You can find it by going to Tools | Serial Monitor. You should see a soil moisture reading in the Serial Monitor tool.

Temperature and humidity sensor

Temperature and humidity have significant impact on the growth of the crop. Keeping temperature and humidity within certain values also keeps crops healthy. To monitor temperature and humidity, we can use the DHT22 or DHT11 for Arduino and Raspberry Pi. These sensors, DHT22 and DHT11, are famous sensors and have a lot of resources available for development.

The RHT03 (also known as DHT22) is a low-cost humidity and temperature sensor with a single-wire digital interface. You can obtain this module from SparkFun (https://www.sparkfun.com/products/10167) and Adafruit (https://www.adafruit.com/products/393). You may also find it in your local online or electronics store.

You can see the DHT22 module in the following figure:

For further information about the DHT22 module, you can read the DHT22 datasheet at http://cdn.sparkfun.com/datasheets/Sensors/Weather/RHT03.pdf.

Now we connect the DHT22 module to the Arduino. The following is the wiring:

  • VDD (pin 1) is connected to the 3.3V pin on the Arduino
  • SIG (pin 2) is connected to digital pin 8 on the Arduino
  • GND (pin 4) is connected to GND on the Arduino

You can see the complete wiring in the following figure:

To access the DHT-22 on the Arduino, we can use the DHT sensor library from Adafruit: https://github.com/adafruit/DHT-sensor-library. We can install this library from the Arduino software. Go to Sketch | Include Library | Manage Libraries and you will get a dialog.

Search for dht in Library Manager. You should see the DHT sensor library by Adafruit. Install this library:

Now let's start to write our Sketch program. You can develop a Sketch program to read temperature and humidity using DHT22. You can write this Sketch program in the Arduino software:

#include "DHT.h" 

// define DHT22
#define DHTTYPE DHT22
// define pin on DHT22
#define DHTPIN 8

DHT dht(DHTPIN, DHTTYPE);

void setup() {
Serial.begin(9600);
dht.begin();
}

void loop() {
delay(2000);

// Reading temperature or humidity takes about 250 milliseconds!
// Sensor readings may also be up to 2 seconds 'old' (its a very slow sensor)
float h = dht.readHumidity();
// Read temperature as Celsius (the default)
float t = dht.readTemperature();


// Check if any reads failed and exit early (to try again).
if (isnan(h) || isnan(t)) {
Serial.println("Failed to read from DHT sensor!");
return;
}

// Compute heat index in Celsius (isFahreheit = false)
float hic = dht.computeHeatIndex(t, h, false);

Serial.print("Humidity: ");
Serial.print(h);
Serial.print(" %\t");
Serial.print("Temperature: ");
Serial.print(t);
Serial.print(" *C\t");
Serial.print("Heat index: ");
Serial.print(hic);
Serial.println(" *C ");
}

Save the program. Now you can compile and upload it to the Arduino board. Furthermore, you can open Serial Monitor to see sensor data from the serial port. You can see a sample program output in the following screenshot:

How it works

In the setup() function, we initialize the DHT module by calling dht.begin(). To read temperature and humidity, you can use dht.readTemperature() and dht.readHumidity(). You also can get a heat index using the dht.computeHeatIndex() function.

Watering your garden and farm

One of the problems in gardening systems is how to water our garden or farm. There are pumps that fit boards such as the Arduino and Raspberry Pi. The 350GPH liquid pump (https://www.sparkfun.com/products/10455) could be used on your Arduino or Raspberry Pi:

You can also use a higher-voltage pump. To control it from the Arduino, you can use a relay that is connected between the Arduino and the pump. A relay can be connected to digital pins from Arduino. Using digitalRead() and digitalWrite() we can communicate with Relay from Arduino.

Building a smart gardening system

In this section, we will develop a smart gardening system. We will use a PID controller to manage all inputs from our sensors, which will be used in decision system. We'll measure soil moisture, temperature, and humidity as parameters for our system. To keep it simple for now, we'll only use one parameter, soil moisture level.

A high-level architecture can be seen in the following figure:

You can replace the MCU board and computer with a mini computer such as a Raspberry Pi. If you use a Raspberry Pi, you should remember that it does not have an analog input pin so you need an additional chip ADC, for instance the MCP3008, to work with analog input.

Assuming the watering system is connected via a relay, if we want to water the garden or farm, we just send digital value 1 to a relay. Some designs use a motor.

Let's build!

Introducing the PID controller

Proportional-integral-derivative (PID) control is the most common control algorithm used in the industry and has been universally accepted in industrial control. The basic idea behind a PID controller is to read a sensor and then compute the desired actuator output by calculating proportional, integral, and derivative responses and summing those three components to compute the output. The design of a general PID controller is as follows:

Furthermore, a PID controller formula can be defined as follows:

represents the coefficients for the proportional, integral, and derivative. These parameters are non-negative values. The variable represents the tracking error, the difference between the desired input value i and the actual output y. This error signal will be sent to the PID controller.

Implementing a PID controller in Python

In this section, we'll build a Python application to implement a PID controller. In general, our program flowchart can be described as follows:

We should not build a PID library from scratch. You can translate the PID controller formula into Python code easily. For implementation, I'm using the PID class from https://github.com/ivmech/ivPID. The following the PID.py file:

import time 

class PID:
"""PID Controller
"""

def __init__(self, P=0.2, I=0.0, D=0.0):

self.Kp = P
self.Ki = I
self.Kd = D

self.sample_time = 0.00
self.current_time = time.time()
self.last_time = self.current_time

self.clear()

def clear(self):
"""Clears PID computations and coefficients"""
self.SetPoint = 0.0

self.PTerm = 0.0
self.ITerm = 0.0
self.DTerm = 0.0
self.last_error = 0.0

# Windup Guard
self.int_error = 0.0
self.windup_guard = 20.0

self.output = 0.0

def update(self, feedback_value):
"""Calculates PID value for given reference feedback

.. math::
u(t) = K_p e(t) + K_i \int_{0}^{t} e(t)dt + K_d {de}/{dt}

.. figure:: images/pid_1.png
:align: center

Test PID with Kp=1.2, Ki=1, Kd=0.001 (test_pid.py)

""
error = self.SetPoint - feedback_value

self.current_time = time.time()
delta_time = self.current_time - self.last_time
delta_error = error - self.last_error

if (delta_time >= self.sample_time):
self.PTerm = self.Kp * error
self.ITerm += error * delta_time

if (self.ITerm < -self.windup_guard):
self.ITerm = -self.windup_guard
elif (self.ITerm > self.windup_guard):
self.ITerm = self.windup_guard

self.DTerm = 0.0
if delta_time > 0:
self.DTerm = delta_error / delta_time

# Remember last time and last error for next calculation
self.last_time = self.current_time
self.last_error = error

self.output = self.PTerm + (self.Ki * self.ITerm) + (self.Kd * self.DTerm)

def setKp(self, proportional_gain):
"""Determines how aggressively the PID reacts to the current error with setting Proportional Gain"""
self.Kp = proportional_gain

def setKi(self, integral_gain):
"""Determines how aggressively the PID reacts to the current error with setting Integral Gain"""
self.Ki = integral_gain

def setKd(self, derivative_gain):
"""Determines how aggressively the PID reacts to the current error with setting Derivative Gain"""
self.Kd = derivative_gain

def setWindup(self, windup):
"""Integral windup, also known as integrator windup or reset windup,
refers to the situation in a PID feedback controller where
a large change in setpoint occurs (say a positive change)
and the integral terms accumulates a significant error during the rise (windup), thus overshooting and continuing
to increase as this accumulated error is unwound
(offset by errors in the other direction).
The specific problem is the excess overshooting.
"""
self.windup_guard = windup

def setSampleTime(self, sample_time):
"""PID that should be updated at a regular interval.
Based on a pre-determined sample time, the PID decides if it should compute or return immediately.
"""
self.sample_time = sample_time

For testing, we'll create a simple program for simulation. We need libraries such as numpy, scipy, pandas, patsy, and matplotlib. Firstly, you should install python-dev for Python development. Type these commands on a Raspberry Pi terminal:

    $ sudo apt-get update
$ sudo apt-get install python-dev

Now you can install the numpy, scipy, pandas, and patsy libraries. Open a Raspberry Pi terminal and type these commands:

    $ sudo apt-get install python-scipy
$ pip install numpy scipy pandas patsy

The last step is to install the matplotlib library from the source code. Type these commands into the Raspberry Pi terminal:

    $ git clone https://github.com/matplotlib/matplotlib
$ cd matplotlib
$ python setup.py build
$ sudo python setup.py install

After the required libraries are installed, we can test our PID.py code. Create a script with the following contents:

import matplotlib 
matplotlib.use('Agg')

import PID
import time
import matplotlib.pyplot as plt
import numpy as np
from scipy.interpolate import spline


P = 1.4
I = 1
D = 0.001
pid = PID.PID(P, I, D)

pid.SetPoint = 0.0
pid.setSampleTime(0.01)

total_sampling = 100
feedback = 0

feedback_list = []
time_list = []
setpoint_list = []

print("simulating....")
for i in range(1, total_sampling):
pid.update(feedback)
output = pid.output
if pid.SetPoint > 0:
feedback += (output - (1 / i))

if 20 < i < 60:
pid.SetPoint = 1

if 60 <= i < 80:
pid.SetPoint = 0.5

if i >= 80:
pid.SetPoint = 1.3

time.sleep(0.02)

feedback_list.append(feedback)
setpoint_list.append(pid.SetPoint)
time_list.append(i)

time_sm = np.array(time_list)
time_smooth = np.linspace(time_sm.min(), time_sm.max(), 300)
feedback_smooth = spline(time_list, feedback_list, time_smooth)

fig1 = plt.gcf()
fig1.subplots_adjust(bottom=0.15)

plt.plot(time_smooth, feedback_smooth, color='red')
plt.plot(time_list, setpoint_list, color='blue')
plt.xlim((0, total_sampling))
plt.ylim((min(feedback_list) - 0.5, max(feedback_list) + 0.5))
plt.xlabel('time (s)')
plt.ylabel('PID (PV)')
plt.title('TEST PID')


plt.grid(True)
print("saving...")
fig1.savefig('result.png', dpi=100)

Save this program into a file called test_pid.py. Then run it:

    $ python test_pid.py  

This program will generate result.png as a result of the PID process. A sample output is shown in the following screenshot. You can see that the blue line has the desired values and the red line is the output of the PID:

How it works

First, we define our PID parameters:

P = 1.4 
I = 1
D = 0.001
pid = PID.PID(P, I, D)

pid.SetPoint = 0.0
pid.setSampleTime(0.01)

total_sampling = 100
feedback = 0

feedback_list = []
time_list = []
setpoint_list = []

After that, we compute the PID value during sampling. In this case, we set the desired output values as follows:

  • Output 1 for sampling from 20 to 60
  • Output 0.5 for sampling from 60 to 80
  • Output 1.3 for sampling more than 80
for i in range(1, total_sampling): 
pid.update(feedback)
output = pid.output
if pid.SetPoint > 0:
feedback += (output - (1 / i))

if 20 < i < 60:
pid.SetPoint = 1

if 60 <= i < 80:
pid.SetPoint = 0.5

if i >= 80:
pid.SetPoint = 1.3

time.sleep(0.02)

feedback_list.append(feedback)
setpoint_list.append(pid.SetPoint)
time_list.append(i)

The last step is to generate a report and save it into a file called result.png:

time_sm = np.array(time_list) 
time_smooth = np.linspace(time_sm.min(), time_sm.max(), 300)
feedback_smooth = spline(time_list, feedback_list, time_smooth)

fig1 = plt.gcf()
fig1.subplots_adjust(bottom=0.15)

plt.plot(time_smooth, feedback_smooth, color='red')
plt.plot(time_list, setpoint_list, color='blue')
plt.xlim((0, total_sampling))
plt.ylim((min(feedback_list) - 0.5, max(feedback_list) + 0.5))
plt.xlabel('time (s)')
plt.ylabel('PID (PV)')
plt.title('TEST PID')


plt.grid(True)
print("saving...")
fig1.savefig('result.png', dpi=100)

Sending data from the Arduino to the server

Not all Arduino boards have the capability to communicate with a server. Some Arduino models have built-in Wi-Fi that can connect and send data to a server, for instance, the Arduino Yun, Arduino MKR1000, and Arduino UNO Wi-Fi.

You can use the HTTP or MQTT protocols to communicate with the server. After the server receives the data, it will perform a computation to determine its decision.

Controlling soil moisture using a PID controller

Now we can change our PID controller simulation using a real application. We use soil moisture to decide whether to pump water. The output of the measurement is used as feedback input for the PID controller.

If the PID output is a positive value, then we turn on the watering system. Otherwise, we stop it. This may not be a good approach but is a good way to show how PID controllers work. Soil moisture data is obtained from the Arduino through a wireless network.

Let's write this program:

import matplotlib 
matplotlib.use('Agg')

import PID
import time
import matplotlib.pyplot as plt
import numpy as np
from scipy.interpolate import spline

P = 1.4
I = 1
D = 0.001
pid = PID.PID(P, I, D)

pid.SetPoint = 0.0
pid.setSampleTime(0.25) # a second

total_sampling = 100
sampling_i = 0
measurement = 0
feedback = 0

feedback_list = []
time_list = []
setpoint_list = []


def get_soil_moisture():
# reading from Arduino
# value 0 - 1023
return 200



print('PID controller is running..')
try:
while 1:
pid.update(feedback)
output = pid.output

soil_moisture = get_soil_moisture()
if soil_moisture is not None:

# # ## testing
# if 23 < sampling_i < 50:
# soil_moisture = 300

# if 65 <= sampling_i < 75:
# soil_moisture = 350

# if sampling_i >= 85:
# soil_moisture = 250
# # ################

if pid.SetPoint > 0:
feedback += soil_moisture + output

print('i={0} desired.soil_moisture={1:0.1f} soil_moisture={2:0.1f} pid.out={3:0.1f} feedback={4:0.1f}'
.format(sampling_i, pid.SetPoint, soil_moisture, output, feedback))
if output > 0:
print('turn on watering system')
elif output < 0:
print('turn off watering system')

if 20 < sampling_i < 60:
pid.SetPoint = 300 # soil_moisture

if 60 <= sampling_i < 80:
pid.SetPoint = 200 # soil_moisture

if sampling_i >= 80:
pid.SetPoint = 260 # soil_moisture



time.sleep(0.5)
sampling_i += 1

feedback_list.append(feedback)
setpoint_list.append(pid.SetPoint)
time_list.append(sampling_i)

if sampling_i >= total_sampling:
break

except KeyboardInterrupt:
print("exit")


print("pid controller done.")
print("generating a report...")
time_sm = np.array(time_list)
time_smooth = np.linspace(time_sm.min(), time_sm.max(), 300)
feedback_smooth = spline(time_list, feedback_list, time_smooth)

fig1 = plt.gcf()
fig1.subplots_adjust(bottom=0.15, left=0.1)

plt.plot(time_smooth, feedback_smooth, color='red')
plt.plot(time_list, setpoint_list, color='blue')
plt.xlim((0, total_sampling))
plt.ylim((min(feedback_list) - 0.5, max(feedback_list) + 0.5))
plt.xlabel('time (s)')
plt.ylabel('PID (PV)')
plt.title('Soil Moisture PID Controller')


plt.grid(True)
fig1.savefig('pid_soil_moisture.png', dpi=100)
print("finish")

Save this program to a file called ch01_pid.py and run it like this:

    $ sudo python ch01_pid.py  

After executing the program, you should obtain a file called pid_soil_moisture.png. A sample output can be seen in the following figure:

How it works

Generally speaking, this program combines two things: reading the current soil moisture value through a soil moisture sensor and implementing a PID controller. After measuring the soil moisture level, we send the value to the PID controller program. The output of the PID controller will cause a certain action. In this case, it will turn on the watering machine.

Summary

We reviewed several gardening system platforms. Then we explored two sensor devices commonly used in real projects. Lastly, we built a decision system to automate for watering garden using PID.

In the next chapter, we will explore a smart parking system and try to build a prototype.

Left arrow icon Right arrow icon
Download code icon Download Code

Key benefits

  • - Build intelligent and unusual IoT projects in just 7 days,
  • - Create home automation, smart home, and robotic projects and allow your devices to do smart work
  • - Build IoT skills through enticing projects and leverage revolutionary computing hardware through the RPi and Arduino.

Description

Intelligent IoT Projects in 7 days is about creating smart IoT projects in just 7 days. This book will help you to overcome the challenge of analyzing data from physical devices. This book aims to help you put together some of the most exciting IoT projects in a short span of time. You'll be able to use these in achieving or automating everyday tasks—one project per day. We will start with a simple smart gardening system and move on to a smart parking system, and then we will make our own vending machine, a smart digital advertising dashboard, a smart speaker machine, an autonomous fire fighter robot, and finally look at a multi-robot cooperation using swarm intelligence

Who is this book for?

If you're a developer, IoT enthusiast, or just someone curious about Internet of Things, then this book is for you. A basic understanding of electronic hardware, networking, and basic programming skills would do wonders.

What you will learn

  • - Learn how to get started with intelligent IoT projects
  • - Explore various pattern recognition and machine learning algorithms to make IoT projects smarter.
  • - Make decisions on which devices to use based on the kind of project to build.
  • - Create a simple machine learning application and implement decision system concepts
  • - Build a smart parking system using Arduino and Raspberry Pi
  • - Learn how to work with Amazon Echo and to build your own smart speaker machine
  • - Build multi-robot cooperation using swarm intelligence.

Product Details

Country selected
Publication date, Length, Edition, Language, ISBN-13
Publication date : Sep 11, 2017
Length: 206 pages
Edition : 1st
Language : English
ISBN-13 : 9781787286429
Category :
Tools :

What do you get with a Packt Subscription?

Free for first 7 days. $19.99 p/m after that. Cancel any time!
Product feature icon Unlimited ad-free access to the largest independent learning library in tech. Access this title and thousands more!
Product feature icon 50+ new titles added per month, including many first-to-market concepts and exclusive early access to books as they are being written.
Product feature icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Product feature icon Thousands of reference materials covering every tech concept you need to stay up to date.
Subscribe now
View plans & pricing

Product Details

Publication date : Sep 11, 2017
Length: 206 pages
Edition : 1st
Language : English
ISBN-13 : 9781787286429
Category :
Tools :

Packt Subscriptions

See our plans and pricing
Modal Close icon
$19.99 billed monthly
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Simple pricing, no contract
$199.99 billed annually
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just $5 each
Feature tick icon Exclusive print discounts
$279.99 billed in 18 months
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just $5 each
Feature tick icon Exclusive print discounts

Frequently bought together


Stars icon
Total $ 131.97
Intelligent IoT Projects in 7 Days
$43.99
IoT Projects with Bluetooth Low Energy
$38.99
Analytics for the Internet of Things (IoT)
$48.99
Total $ 131.97 Stars icon
Banner background image

Table of Contents

8 Chapters
A Simple Smart Gardening System Chevron down icon Chevron up icon
A Smart Parking System Chevron down icon Chevron up icon
Making Your Own Vending Machine Chevron down icon Chevron up icon
A Smart Digital Advertising Dashboard Chevron down icon Chevron up icon
A Smart Speaker Machine Chevron down icon Chevron up icon
Autonomous Firefighter Robot Chevron down icon Chevron up icon
Multi-Robot Cooperation Using Swarm Intelligence Chevron down icon Chevron up icon
Essential Hardware Components Chevron down icon Chevron up icon

Customer reviews

Rating distribution
Full star icon Full star icon Half star icon Empty star icon Empty star icon 2.5
(2 Ratings)
5 star 0%
4 star 50%
3 star 0%
2 star 0%
1 star 50%
idris Feb 16, 2018
Full star icon Full star icon Full star icon Full star icon Empty star icon 4
Nice book to start with
Amazon Verified review Amazon
Souvik Ganguli Jan 25, 2019
Full star icon Empty star icon Empty star icon Empty star icon Empty star icon 1
Don't buy....entire waste of money
Amazon Verified review Amazon
Get free access to Packt library with over 7500+ books and video courses for 7 days!
Start Free Trial

FAQs

What is included in a Packt subscription? Chevron down icon Chevron up icon

A subscription provides you with full access to view all Packt and licnesed content online, this includes exclusive access to Early Access titles. Depending on the tier chosen you can also earn credits and discounts to use for owning content

How can I cancel my subscription? Chevron down icon Chevron up icon

To cancel your subscription with us simply go to the account page - found in the top right of the page or at https://subscription.packtpub.com/my-account/subscription - From here you will see the ‘cancel subscription’ button in the grey box with your subscription information in.

What are credits? Chevron down icon Chevron up icon

Credits can be earned from reading 40 section of any title within the payment cycle - a month starting from the day of subscription payment. You also earn a Credit every month if you subscribe to our annual or 18 month plans. Credits can be used to buy books DRM free, the same way that you would pay for a book. Your credits can be found in the subscription homepage - subscription.packtpub.com - clicking on ‘the my’ library dropdown and selecting ‘credits’.

What happens if an Early Access Course is cancelled? Chevron down icon Chevron up icon

Projects are rarely cancelled, but sometimes it's unavoidable. If an Early Access course is cancelled or excessively delayed, you can exchange your purchase for another course. For further details, please contact us here.

Where can I send feedback about an Early Access title? Chevron down icon Chevron up icon

If you have any feedback about the product you're reading, or Early Access in general, then please fill out a contact form here and we'll make sure the feedback gets to the right team. 

Can I download the code files for Early Access titles? Chevron down icon Chevron up icon

We try to ensure that all books in Early Access have code available to use, download, and fork on GitHub. This helps us be more agile in the development of the book, and helps keep the often changing code base of new versions and new technologies as up to date as possible. Unfortunately, however, there will be rare cases when it is not possible for us to have downloadable code samples available until publication.

When we publish the book, the code files will also be available to download from the Packt website.

How accurate is the publication date? Chevron down icon Chevron up icon

The publication date is as accurate as we can be at any point in the project. Unfortunately, delays can happen. Often those delays are out of our control, such as changes to the technology code base or delays in the tech release. We do our best to give you an accurate estimate of the publication date at any given time, and as more chapters are delivered, the more accurate the delivery date will become.

How will I know when new chapters are ready? Chevron down icon Chevron up icon

We'll let you know every time there has been an update to a course that you've bought in Early Access. You'll get an email to let you know there has been a new chapter, or a change to a previous chapter. The new chapters are automatically added to your account, so you can also check back there any time you're ready and download or read them online.

I am a Packt subscriber, do I get Early Access? Chevron down icon Chevron up icon

Yes, all Early Access content is fully available through your subscription. You will need to have a paid for or active trial subscription in order to access all titles.

How is Early Access delivered? Chevron down icon Chevron up icon

Early Access is currently only available as a PDF or through our online reader. As we make changes or add new chapters, the files in your Packt account will be updated so you can download them again or view them online immediately.

How do I buy Early Access content? Chevron down icon Chevron up icon

Early Access is a way of us getting our content to you quicker, but the method of buying the Early Access course is still the same. Just find the course you want to buy, go through the check-out steps, and you’ll get a confirmation email from us with information and a link to the relevant Early Access courses.

What is Early Access? Chevron down icon Chevron up icon

Keeping up to date with the latest technology is difficult; new versions, new frameworks, new techniques. This feature gives you a head-start to our content, as it's being created. With Early Access you'll receive each chapter as it's written, and get regular updates throughout the product's development, as well as the final course as soon as it's ready.We created Early Access as a means of giving you the information you need, as soon as it's available. As we go through the process of developing a course, 99% of it can be ready but we can't publish until that last 1% falls in to place. Early Access helps to unlock the potential of our content early, to help you start your learning when you need it most. You not only get access to every chapter as it's delivered, edited, and updated, but you'll also get the finalized, DRM-free product to download in any format you want when it's published. As a member of Packt, you'll also be eligible for our exclusive offers, including a free course every day, and discounts on new and popular titles.