Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Python Machine Learning By Example

You're reading from   Python Machine Learning By Example The easiest way to get into machine learning

Arrow left icon
Product type Paperback
Published in May 2017
Publisher Packt
ISBN-13 9781783553112
Length 254 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Yuxi (Hayden) Liu Yuxi (Hayden) Liu
Author Profile Icon Yuxi (Hayden) Liu
Yuxi (Hayden) Liu
Ivan Idris Ivan Idris
Author Profile Icon Ivan Idris
Ivan Idris
Arrow right icon
View More author details
Toc

Table of Contents (9) Chapters Close

Preface 1. Getting Started with Python and Machine Learning 2. Exploring the 20 Newsgroups Dataset with Text Analysis Algorithms FREE CHAPTER 3. Spam Email Detection with Naive Bayes 4. News Topic Classification with Support Vector Machine 5. Click-Through Prediction with Tree-Based Algorithms 6. Click-Through Prediction with Logistic Regression 7. Stock Price Prediction with Regression Algorithms 8. Best Practices

Summary

In this chapter, we started with an introduction to a typical machine learning problem, online advertising click-through prediction and the challenges including categorical features. We then resorted to tree-based algorithms that can take in both numerical and categorical features. We then had an in-depth discussion on the decision tree algorithm: the mechanics, different types, how to construct a tree, and two metrics, Gini impurity and entropy, to measure the effectiveness of a split at a tree node. After constructing a tree in an example by hand, we implemented the algorithm from scratch. We also learned how to use the decision tree package from scikit-learn and applied it to predict click-through. We continued to improve the performance by adopting the feature-based bagging algorithm random forest. The chapter then ended with tips to tune a random forest model.

More practice is always good for honing...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image