We are already aware that RNNs are cyclical graphs, unlike feedforward networks, which are acyclic directional graphs. In feedforward networks, the error derivatives are calculated from the layer above. However, in an RNN we don't have such layering to perform error derivative calculations. A simple solution to this problem is to unroll the RNN and make it similar to a feedforward network. To enable this, the hidden units from the RNN are replicated at each time step. Each time step replication forms a layer that is similar to layers in a feedforward network. Each time step t layer connects to all possible layers in the time step t+1. Therefore, we randomly initialize the weights, unroll the network, and then use backpropagation to optimize the weights in the hidden layer. The lowest layer is initialized by passing parameters. These parameters...
Germany
Slovakia
Canada
Brazil
Singapore
Hungary
Philippines
Mexico
Thailand
Ukraine
Luxembourg
Estonia
Lithuania
Norway
Chile
United States
Great Britain
India
Spain
South Korea
Ecuador
Colombia
Taiwan
Switzerland
Indonesia
Cyprus
Denmark
Finland
Poland
Malta
Czechia
New Zealand
Austria
Turkey
France
Sweden
Italy
Egypt
Belgium
Portugal
Slovenia
Ireland
Romania
Greece
Argentina
Malaysia
South Africa
Netherlands
Bulgaria
Latvia
Australia
Japan
Russia