Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
A Practical Guide to Quantum Machine Learning and Quantum Optimization

You're reading from   A Practical Guide to Quantum Machine Learning and Quantum Optimization Hands-on Approach to Modern Quantum Algorithms

Arrow left icon
Product type Paperback
Published in Mar 2023
Publisher Packt
ISBN-13 9781804613832
Length 680 pages
Edition 1st Edition
Arrow right icon
Authors (2):
Arrow left icon
Elías F. Combarro Fernández-Combarro Álvarez Elías F. Combarro Fernández-Combarro Álvarez
Author Profile Icon Elías F. Combarro Fernández-Combarro Álvarez
Elías F. Combarro Fernández-Combarro Álvarez
Samuel González Castillo Samuel González Castillo
Author Profile Icon Samuel González Castillo
Samuel González Castillo
Arrow right icon
View More author details
Toc

Table of Contents (27) Chapters Close

Preface 1. Part I: I, for One, Welcome our New Quantum Overlords
2. Chapter 1: Foundations of Quantum Computing FREE CHAPTER 3. Chapter 2: The Tools of the Trade in Quantum Computing 4. Part II: When Time is Gold: Tools for Quantum Optimization
5. Chapter 3: Working with Quadratic Unconstrained Binary Optimization Problems 6. Chapter 4: Adiabatic Quantum Computing and Quantum Annealing 7. Chapter 5: QAOA: Quantum Approximate Optimization Algorithm 8. Chapter 6: GAS: Grover Adaptive Search 9. Chapter 7: VQE: Variational Quantum Eigensolver 10. Part III: A Match Made in Heaven: Quantum Machine Learning
11. Chapter 8: What Is Quantum Machine Learning? 12. Chapter 9: Quantum Support Vector Machines 13. Chapter 10: Quantum Neural Networks 14. Chapter 11: The Best of Both Worlds: Hybrid Architectures 15. Chapter 12: Quantum Generative Adversarial Networks 16. Part IV: Afterword and Appendices
17. Chapter 13: Afterword: The Future of Quantum Computing
18. Assessments 19. Bibliography
20. Index
21. Other Books You May Enjoy Appendix A: Complex Numbers
1. Appendix B: Basic Linear Algebra 2. Appendix C: Computational Complexity 3. Appendix D: Installing the Tools 4. Appendix E: Production Notes

7.2 Introducing VQE

The goal of the Variational Quantum Eigensolver (VQE) is to find a ground state of a given Hamiltonian . This Hamiltonian can describe, for instance, the energy of a certain physical or chemical process, and we will use some such examples in the following two sections, which will cover how to execute VQE with Qiskit and PennyLane. For the moment, however, we will keep everything abstract and focus on finding a state such that is minimum. Note that in this section, we will be using to refer to the Hamiltonian so that it does not get confused with the Hadamard matrix that we will also be using in our computations.

To learn more

VQE is by no means the only quantum algorithm that has been proposed to find the ground states of Hamiltonians. Some very promising options use a quantum subroutine known as Quantum Phase Estimation (QPE) (see, for instance, the excellent surveys by McArdle et al. [66] and by Cao et al. [22]). The main disadvantage of these approaches...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image