Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Essential Mathematics for Quantum Computing

You're reading from   Essential Mathematics for Quantum Computing A beginner's guide to just the math you need without needless complexities

Arrow left icon
Product type Paperback
Published in Apr 2022
Publisher Packt
ISBN-13 9781801073141
Length 252 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Leonard S. Woody III Leonard S. Woody III
Author Profile Icon Leonard S. Woody III
Leonard S. Woody III
Arrow right icon
View More author details
Toc

Table of Contents (20) Chapters Close

Preface 1. Section 1: Introduction
2. Chapter 1: Superposition with Euclid FREE CHAPTER 3. Chapter 2: The Matrix 4. Section 2: Elementary Linear Algebra
5. Chapter 3: Foundations 6. Chapter 4: Vector Spaces 7. Chapter 5: Using Matrices to Transform Space 8. Section 3: Adding Complexity
9. Chapter 6: Complex Numbers 10. Chapter 7: EigenStuff 11. Chapter 8: Our Space in the Universe 12. Chapter 9: Advanced Concepts 13. Section 4: Appendices
14. Other Books You May Enjoy Appendix 1: Bra–ket Notation 1. Appendix 2: Sigma Notation 2. Appendix 3: Trigonometry 3. Appendix 4: Probability 4. Appendix 5: References

Operators

In this section, we will consider linear operators. We first described these in Chapter 5, Transforming Space with Matrices. To reiterate, linear operators are linear transformations that map vectors from and to the same vector space. They are represented by square matrices. For just this section, I will put a "hat" or caret on the top of operators and use just the uppercase letter for matrices, as I want to be deliberate when referencing operators.

For instance, let's look at the operator that transforms the zero and one states:

Now, let's come up with a matrix that represents this operator. The question becomes, which basis will we use? Let's use the computational basis, which is |0 and |1⟩. I will denote this set of basis vectors by the letter C. So, the operator in the C basis is represented by:

Now, I want to come up with a matrix representation of in the |+, |- basis...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image