Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Expert Data Modeling with Power BI

You're reading from   Expert Data Modeling with Power BI Get the best out of Power BI by building optimized data models for reporting and business needs

Arrow left icon
Product type Paperback
Published in Jun 2021
Publisher Packt
ISBN-13 9781800205697
Length 612 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Soheil Bakhshi Soheil Bakhshi
Author Profile Icon Soheil Bakhshi
Soheil Bakhshi
Arrow right icon
View More author details
Toc

Table of Contents (18) Chapters Close

Preface 1. Section 1: Data Modeling in Power BI
2. Chapter 1: Introduction to Data Modeling in Power BI FREE CHAPTER 3. Chapter 2: Data Analysis eXpressions and Data Modeling 4. Section 2: Data Preparation in Query Editor
5. Chapter 3: Data Preparation in Power Query Editor 6. Chapter 4: Getting Data from Various Sources 7. Chapter 5: Common Data Preparation Steps 8. Chapter 6: Star Schema Preparation in Power Query Editor 9. Chapter 7: Data Preparation Common Best Practices 10. Section 3: Data Modeling
11. Chapter 8: Data Modeling Components 12. Chapter 9: Star Schema and Data Modeling Common Best Practices 13. Section 4: Advanced Data Modeling
14. Chapter 10: Advanced Data Modeling Techniques 15. Chapter 11: Row-Level Security 16. Chapter 12: Extra Options and Features Available for Data Modeling 17. Other Books You May Enjoy

Using aggregations

From a data analytics viewpoint, the concept of aggregation tables has been around for a long time. The concept was widely used in SQL Server Analysis Service Multi-Dimensional. The way aggregation tables work is simple: we aggregate the data at a particular grain and make it available in the data model. Already aggregating the data that's available in the model usually translates into better performance at runtime. However, the aggregation typically happens at a different level of granularity. Therefore, we change the granularity of the base table. Now, you may be wondering, so what if the business needs to drill down to a lower granular level of data? The answer is that we need to keep the base table available in the data model. We aggregate the base table at a different granular level in a new table. Then, we implement a control mechanism to detect the level of granularity that the user is at. If the data is available at the aggregated level, the calculation...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image