It is necessary to have a set of proper hyperparameter values to create a good ML model. The reason for this is that having random values leads to controversial results and behaviors that are not expected by the practitioner. There are several approaches we can follow to choose the best set of hyperparameter values. We can try to use hyperparameters from the algorithms we have already trained that are similar to our task. We can also try to find some heuristics and tune them manually. However, this task can be automated. The grid search technique is the automated approach for searching for the best hyperparameter values. It uses the cross-validation technique for model performance estimation.
Germany
Slovakia
Canada
Brazil
Singapore
Hungary
Philippines
Mexico
Thailand
Ukraine
Luxembourg
Estonia
Lithuania
Norway
Chile
United States
Great Britain
India
Spain
South Korea
Ecuador
Colombia
Taiwan
Switzerland
Indonesia
Cyprus
Denmark
Finland
Poland
Malta
Czechia
New Zealand
Austria
Turkey
France
Sweden
Italy
Egypt
Belgium
Portugal
Slovenia
Ireland
Romania
Greece
Argentina
Malaysia
South Africa
Netherlands
Bulgaria
Latvia
Australia
Japan
Russia