Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Machine Learning Engineering with MLflow

You're reading from   Machine Learning Engineering with MLflow Manage the end-to-end machine learning life cycle with MLflow

Arrow left icon
Product type Paperback
Published in Aug 2021
Publisher Packt
ISBN-13 9781800560796
Length 248 pages
Edition 1st Edition
Tools
Arrow right icon
Author (1):
Arrow left icon
Natu Lauchande Natu Lauchande
Author Profile Icon Natu Lauchande
Natu Lauchande
Arrow right icon
View More author details
Toc

Table of Contents (18) Chapters Close

Preface 1. Section 1: Problem Framing and Introductions
2. Chapter 1: Introducing MLflow FREE CHAPTER 3. Chapter 2: Your Machine Learning Project 4. Section 2: Model Development and Experimentation
5. Chapter 3: Your Data Science Workbench 6. Chapter 4: Experiment Management in MLflow 7. Chapter 5: Managing Models with MLflow 8. Section 3: Machine Learning in Production
9. Chapter 6: Introducing ML Systems Architecture 10. Chapter 7: Data and Feature Management 11. Chapter 8: Training Models with MLflow 12. Chapter 9: Deployment and Inference with MLflow 13. Section 4: Advanced Topics
14. Chapter 10: Scaling Up Your Machine Learning Workflow 15. Chapter 11: Performance Monitoring 16. Chapter 12: Advanced Topics with MLflow 17. Other Books You May Enjoy

Starting up a local model registry

Before executing the following sections in this chapter, you will need to set up a centralized model registry and tracking server. We don't need the whole of the Data Science Workbench, so we can go directly to a lighter variant of the workbench built into the model that we will deploy in the following sections. You should be in the root folder of the code for this chapter, available at https://github.com/PacktPublishing/Machine-Learning-Engineering-with-MLflow/tree/master/Chapter09 .

Next, move to the gradflow directory and start a light version of the environment to serve your model, as follows:

$ cd gradflow
$ export MLFLOW_TRACKING_URI=http://localhost:5000 
$ make gradflow-light

After having set up our infrastructure for API deployment with MLflow with the model retrieved from the ML registry, we will next move on to the cases where we need to score some batch input data. We will prepare a batch inference job with MLflow for the...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image