Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Machine Learning for Streaming Data with Python

You're reading from   Machine Learning for Streaming Data with Python Rapidly build practical online machine learning solutions using River and other top key frameworks

Arrow left icon
Product type Paperback
Published in Jul 2022
Publisher Packt
ISBN-13 9781803248363
Length 258 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Joos Korstanje Joos Korstanje
Author Profile Icon Joos Korstanje
Joos Korstanje
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. Part 1: Introduction and Core Concepts of Streaming Data
2. Chapter 1: An Introduction to Streaming Data FREE CHAPTER 3. Chapter 2: Architectures for Streaming and Real-Time Machine Learning 4. Chapter 3: Data Analysis on Streaming Data 5. Part 2: Exploring Use Cases for Data Streaming
6. Chapter 4: Online Learning with River 7. Chapter 5: Online Anomaly Detection 8. Chapter 6: Online Classification 9. Chapter 7: Online Regression 10. Chapter 8: Reinforcement Learning 11. Part 3: Advanced Concepts and Best Practices around Streaming Data
12. Chapter 9: Drift and Drift Detection 13. Chapter 10: Feature Transformation and Scaling 14. Chapter 11: Catastrophic Forgetting 15. Chapter 12: Conclusion and Best Practices 16. Other Books You May Enjoy

Conventions used

There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: "There is no predict_many function here, so it is necessary to do a loop with predict_one repeatedly."

A block of code is set as follows:

def self_made_decision_tree(observation): 
    if observation.can_speak: 
        if not observation.has_feathers: 
            return 'human'     
    return 'not human'  
for i,row in data.iterrows(): 
    print(self_made_decision_tree(row)) 

When we wish to draw your attention to a particular part of a code block, the relevant lines or items are set in bold:

from sklearn.datasets import make_blobs 
X,y=make_blobs(shuffle=True,centers=2,n_samples=2000) 

Bold: Indicates a new term, an important word, or words that you see onscreen. For instance, words in menus or dialog boxes appear in bold. Here is an example: "Select System info from the Administration panel."

Tips or important notes

Appear like this.

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image