A fundamental question when doing linear regression is how to choose the best subset of variables that we have already included. Every variable that is added to a model changes the standard errors of the other variables already included. Consequently, the p-values also change, and the order is relevant. This happens because in general the variables are correlated, causing the coefficients' covariance matrix to change (hence changing the standard errors). Sandwich estimators use a different formula for the standard errors. Note the Ω which is the new element here. This matrix is estimated by the sandwich package. This formula also explicits why this is called the sandwich method (the Ω gets sandwiched between two equal expressions). Sandwich estimators use a different formula for the standard errors. Note the Ω which is the new element...
Germany
Slovakia
Canada
Brazil
Singapore
Hungary
Philippines
Mexico
Thailand
Ukraine
Luxembourg
Estonia
Lithuania
Norway
Chile
United States
Great Britain
India
Spain
South Korea
Ecuador
Colombia
Taiwan
Switzerland
Indonesia
Cyprus
Denmark
Finland
Poland
Malta
Czechia
New Zealand
Austria
Turkey
France
Sweden
Italy
Egypt
Belgium
Portugal
Slovenia
Ireland
Romania
Greece
Argentina
Malaysia
South Africa
Netherlands
Bulgaria
Latvia
Australia
Japan
Russia