Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
TensorFlow 2 Reinforcement Learning Cookbook

You're reading from   TensorFlow 2 Reinforcement Learning Cookbook Over 50 recipes to help you build, train, and deploy learning agents for real-world applications

Arrow left icon
Product type Paperback
Published in Jan 2021
Publisher Packt
ISBN-13 9781838982546
Length 472 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Palanisamy Palanisamy
Author Profile Icon Palanisamy
Palanisamy
Arrow right icon
View More author details
Toc

Table of Contents (11) Chapters Close

Preface 1. Chapter 1: Developing Building Blocks for Deep Reinforcement Learning Using Tensorflow 2.x 2. Chapter 2: Implementing Value-Based, Policy-Based, and Actor-Critic Deep RL Algorithms FREE CHAPTER 3. Chapter 3: Implementing Advanced RL Algorithms 4. Chapter 4: Reinforcement Learning in the Real World – Building Cryptocurrency Trading Agents 5. Chapter 5: Reinforcement Learning in the Real World – Building Stock/Share Trading Agents 6. Chapter 6: Reinforcement Learning in the Real World – Building Intelligent Agents to Complete Your To-Dos 7. Chapter 7: Deploying Deep RL Agents to the Cloud 8. Chapter 8: Distributed Training for Accelerated Development of Deep RL Agents 9. Chapter 9: Deploying Deep RL Agents on Multiple Platforms 10. Other Books You May Enjoy

Building stochastic environments for training RL agents

To train RL agents for the real world, we need learning environments that are stochastic, since real-world problems are stochastic in nature. This recipe will walk you through the steps for building a Maze learning environment to train RL agents. The Maze is a simple, stochastic environment where the world is represented as a grid. Each location on the grid can be referred to as a cell. The goal of an agent in this environment is to find its way to the goal state. Consider the maze shown in the following diagram, where the black cells represent walls:

Figure 2.1 – The Maze environment

The agent's location is initialized to be at the top-left cell in the Maze. The agent needs to find its way around the grid to reach the goal located at the top-right cell in the Maze, collecting a maximum number of coins along the way while avoiding walls. The location of the goal, coins, walls, and the agent...

You have been reading a chapter from
TensorFlow 2 Reinforcement Learning Cookbook
Published in: Jan 2021
Publisher: Packt
ISBN-13: 9781838982546
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image