Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Big Data Analytics

You're reading from   Big Data Analytics Real time analytics using Apache Spark and Hadoop

Arrow left icon
Product type Paperback
Published in Sep 2016
Publisher Packt
ISBN-13 9781785884696
Length 326 pages
Edition 1st Edition
Tools
Concepts
Arrow right icon
Author (1):
Arrow left icon
Venkat Ankam Venkat Ankam
Author Profile Icon Venkat Ankam
Venkat Ankam
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. Big Data Analytics at a 10,000-Foot View FREE CHAPTER 2. Getting Started with Apache Hadoop and Apache Spark 3. Deep Dive into Apache Spark 4. Big Data Analytics with Spark SQL, DataFrames, and Datasets 5. Real-Time Analytics with Spark Streaming and Structured Streaming 6. Notebooks and Dataflows with Spark and Hadoop 7. Machine Learning with Spark and Hadoop 8. Building Recommendation Systems with Spark and Mahout 9. Graph Analytics with GraphX 10. Interactive Analytics with SparkR Index

Building machine learning pipelines


Spark ML is an API built on top of the DataFrames API of Spark SQL to construct machine learning pipelines. Spark ML is inspired by the scikit-learn project, which makes it easier to combine multiple algorithms into a single pipeline. The following are the concepts used in ML pipelines:

  • DataFrame: A DataFrame is used to create rows and columns of data just like an RDBMS table. A DataFrame can contain text, feature vectors, true labels, and predictions in columns.

  • Transformer: A Transformer is an algorithm to transform a DataFrame into another DataFrame. The ML model is an example of a Transformer that transforms a DataFrame with features into a DataFrame with predictions.

  • Estimator: This is an algorithm to produce a Transformer by fitting on a DataFrame. Generating a model is an example of an Estimator.

  • Pipeline: As the name indicates, a pipeline creates a workflow by chaining multiple Transformers and Estimators together.

  • Parameter: This is an API to...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image