Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Deep Learning with TensorFlow and Keras – 3rd edition

You're reading from   Deep Learning with TensorFlow and Keras – 3rd edition Build and deploy supervised, unsupervised, deep, and reinforcement learning models

Arrow left icon
Product type Paperback
Published in Oct 2022
Publisher Packt
ISBN-13 9781803232911
Length 698 pages
Edition 3rd Edition
Tools
Arrow right icon
Authors (3):
Arrow left icon
Sujit Pal Sujit Pal
Author Profile Icon Sujit Pal
Sujit Pal
Antonio Gulli Antonio Gulli
Author Profile Icon Antonio Gulli
Antonio Gulli
Dr. Amita Kapoor Dr. Amita Kapoor
Author Profile Icon Dr. Amita Kapoor
Dr. Amita Kapoor
Arrow right icon
View More author details
Toc

Table of Contents (23) Chapters Close

Preface 1. Neural Network Foundations with TF 2. Regression and Classification FREE CHAPTER 3. Convolutional Neural Networks 4. Word Embeddings 5. Recurrent Neural Networks 6. Transformers 7. Unsupervised Learning 8. Autoencoders 9. Generative Models 10. Self-Supervised Learning 11. Reinforcement Learning 12. Probabilistic TensorFlow 13. An Introduction to AutoML 14. The Math Behind Deep Learning 15. Tensor Processing Unit 16. Other Useful Deep Learning Libraries 17. Graph Neural Networks 18. Machine Learning Best Practices 19. TensorFlow 2 Ecosystem 20. Advanced Convolutional Neural Networks 21. Other Books You May Enjoy
22. Index

Classification tasks and decision boundaries

Till now, the focus of the chapter was on regression. In this section, we will talk about another important task: the task of classification. Let us first understand the difference between regression (also sometimes referred to as prediction) and classification:

  • In classification, the data is grouped into classes/categories, while in regression, the aim is to get a continuous numerical value for given data. For example, identifying the number of handwritten digits is a classification task; all handwritten digits will belong to one of the ten numbers lying between 0-9. The task of predicting the price of the house depending upon different input variables is a regression task.
  • In a classification task, the model finds the decision boundaries separating one class from another. In the regression task, the model approximates a function that fits the input-output relationship.
  • Classification is a subset of regression; here, we are predicting classes. Regression is much more general.

Figure 2.8 shows how classification and regression tasks differ. In classification, we need to find a line (or a plane or hyperplane in multidimensional space) separating the classes. In regression, the aim is to find a line (or plane or hyperplane) that fits the given input points:

Figure 2.8: Classification vs regression

In the following section, we will explain logistic regression, which is a very common and useful classification technique.

Logistic regression

Logistic regression is used to determine the probability of an event. Conventionally, the event is represented as a categorical dependent variable. The probability of the event is expressed using the sigmoid (or “logit”) function:

The goal now is to estimate weights and bias term b. In logistic regression, the coefficients are estimated using either the maximum likelihood estimator or stochastic gradient descent. If p is the total number of input data points, the loss is conventionally defined as a cross-entropy term given by:

Logistic regression is used in classification problems. For example, when looking at medical data, we can use logistic regression to classify whether a person has cancer or not. If the output categorical variable has two or more levels, we can use multinomial logistic regression. Another common technique used for two or more output variables is one versus all.

For multiclass logistic regression, the cross-entropy loss function is modified as:

where K is the total number of classes. You can read more about logistic regression at https://en.wikipedia.org/wiki/Logistic_regression.

Now that you have some idea about logistic regression, let us see how we can apply it to any dataset.

Logistic regression on the MNIST dataset

Next, we will use TensorFlow Keras to classify handwritten digits using logistic regression. We will be using the MNIST (Modified National Institute of Standards and Technology) dataset. For those working in the field of deep learning, MNIST is not new, it is like the ABC of machine learning. It contains images of handwritten digits and a label for each image, indicating which digit it is. The label contains a value lying between 0-9 depending on the handwritten digit. Thus, it is a multiclass classification.

To implement the logistic regression, we will make a model with only one dense layer. Each class will be represented by a unit in the output, so since we have 10 classes, the number of units in the output would be 10. The probability function used in the logistic regression is similar to the sigmoid activation function; therefore, we use sigmoid activation.

Let us build our model:

  1. The first step is, as always, importing the modules needed. Notice that here we are using another useful layer from the Keras API, the Flatten layer. The Flatten layer helps us to resize the 28 x 28 two-dimensional input images of the MNIST dataset into a 784 flattened array:
    import tensorflow as tf
    import numpy as np
    import matplotlib.pyplot as plt
    import pandas as pd
    import tensorflow.keras as K
    from tensorflow.keras.layers import Dense, Flatten
    
  2. We take the input data of MNIST from the tensorflow.keras dataset:
    ((train_data, train_labels),(test_data, test_labels)) = tf.keras.datasets.mnist.load_data()
    
  3. Next, we preprocess the data. We normalize the images; the MNIST dataset images are black and white images with the intensity value of each pixel lying between 0-255. We divide it by 255, so that now the values lie between 0-1:
    train_data = train_data/np.float32(255)
    train_labels = train_labels.astype(np.int32)  
    test_data = test_data/np.float32(255)
    test_labels = test_labels.astype(np.int32)
    
  4. Now, we define a very simple model; it has only one Dense layer with 10 units, and it takes an input of size 784. You can see from the output of the model summary that only the Dense layer has trainable parameters:
    model = K.Sequential([
        Flatten(input_shape=(28, 28)),
        Dense(10, activation='sigmoid')
    ])
    model.summary()
    
    Model: "sequential"
    ____________________________________________________________
     Layer (type)           Output Shape              Param #   
    ============================================================
     flatten (Flatten)      (None, 784)               0         
                                                                
     dense (Dense)          (None, 10)                7850      
                                                                
    ============================================================
    Total params: 7,850
    Trainable params: 7,850
    Non-trainable params: 0
    ____________________________________________________________
    
  5. Since the test labels are integral values, we will use SparseCategoricalCrossentropy loss with logits set to True. The optimizer selected is Adam. Additionally, we also define accuracy as metrics to be logged as the model is trained. We train our model for 50 epochs, with a train-validation split of 80:20:
    model.compile(optimizer='adam', loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=['accuracy'])
    history = model.fit(x=train_data,y=train_labels, epochs=50, verbose=1, validation_split=0.2)
    
  6. Let us see how our simple model has fared by plotting the loss plot. You can see that since the validation loss and training loss are diverging, as the training loss is decreasing, the validation loss increases, thus the model is overfitting. You can improve the model performance by adding hidden layers:
    plt.plot(history.history['loss'], label='loss')
    plt.plot(history.history['val_loss'], label='val_loss')
    plt.xlabel('Epoch')
    plt.ylabel('Loss')
    plt.legend()
    plt.grid(True)
    
Chart, line chart  Description automatically generated

Figure 2.9: Loss plot

  1. To better understand the result, we build two utility functions; these functions help us in visualizing the handwritten digits and the probability of the 10 units in the output:
    def plot_image(i, predictions_array, true_label, img):
        true_label, img = true_label[i], img[i]
        plt.grid(False)
        plt.xticks([])
        plt.yticks([])
        plt.imshow(img, cmap=plt.cm.binary)
        predicted_label = np.argmax(predictions_array)
        if predicted_label == true_label:
          color ='blue'
        else:
          color ='red'
        plt.xlabel("Pred {} Conf: {:2.0f}% True ({})".format(predicted_label,
                                      100*np.max(predictions_array),
                                      true_label),
                                      color=color)
    def plot_value_array(i, predictions_array, true_label):
        true_label = true_label[i]
        plt.grid(False)
        plt.xticks(range(10))
        plt.yticks([])
        thisplot = plt.bar(range(10), predictions_array,
        color"#777777")
        plt.ylim([0, 1])
        predicted_label = np.argmax(predictions_array)
        thisplot[predicted_label].set_color('red')
        thisplot[true_label].set_color('blue')
    
  2. Using these utility functions, we plot the predictions:
    predictions = model.predict(test_data)
    i = 56
    plt.figure(figsize=(10,5))
    plt.subplot(1,2,1)
    plot_image(i, predictions[i], test_labels, test_data)
    plt.subplot(1,2,2)
    plot_value_array(i, predictions[i],  test_labels)
    plt.show()
    
  3. The plot on the left is the image of the handwritten digit, with the predicted label, the confidence in the prediction, and the true label. The image on the right shows the probability (logistic) output of the 10 units; we can see that the unit which represents the number 4 has the highest probability:
A picture containing logo  Description automatically generated

Figure 2.10: Predicted digit and confidence value of the prediction

  1. In this code, to stay true to logistic regression, we used a sigmoid activation function and only one Dense layer. For better performance, adding dense layers and using softmax as the final activation function will be helpful. For example, the following model gives 97% accuracy on the validation dataset:
    better_model = K.Sequential([
        Flatten(input_shape=(28, 28)),
        Dense(128,  activation='relu'),
        Dense(10, activation='softmax')
    ])
    better_model.summary()
    

You can experiment by adding more layers, or by changing the number of neurons in each layer, and even changing the optimizer. This will give you a better understanding of how these parameters influence the model performance.

You have been reading a chapter from
Deep Learning with TensorFlow and Keras – 3rd edition - Third Edition
Published in: Oct 2022
Publisher: Packt
ISBN-13: 9781803232911
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image