Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Embedded Programming with Modern C++ Cookbook

You're reading from   Embedded Programming with Modern C++ Cookbook Practical recipes to help you build robust and secure embedded applications on Linux

Arrow left icon
Product type Paperback
Published in Apr 2020
Publisher Packt
ISBN-13 9781838821043
Length 412 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Igor Viarheichyk Igor Viarheichyk
Author Profile Icon Igor Viarheichyk
Igor Viarheichyk
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. Fundamentals of Embedded Systems 2. Setting Up the Environment FREE CHAPTER 3. Working with Different Architectures 4. Handling Interrupts 5. Debugging, Logging, and Profiling 6. Memory Management 7. Multithreading and Synchronization 8. Communication and Serialization 9. Peripherals 10. Reducing Power Consumption 11. Time Points and Intervals 12. Error Handling and Fault Tolerance 13. Guidelines for Real-Time Systems 14. Guidelines for Safety-Critical Systems 15. Microcontroller Programming 16. Other Books You May Enjoy

Working with hardware errors

A significant part of an embedded developer's work is dealing with hardware. Unlike most application developers, embedded developers cannot rely on hardware. Hardware fails for different reasons and embedded developers have to distinguish purely software failures from software failures caused by hardware failures or glitches.

Early versions of hardware

Embedded systems are based on specialized hardware designed and manufactured for a particular use case. This implies that at the time that the software for the embedded system is being developed, its hardware is not yet stable and well tested. When software developers encounter an error in their code behavior, it does not necessarily mean there is a software bug but it might be a result of incorrectly working hardware.

It is hard to triage these kinds of problems. They require knowledge, intuition, and sometimes the use of an oscilloscope to narrow the root cause of an issue down to hardware.

Hardware is unreliable

Hardware is inherently unreliable. Each hardware component has a probability of failure and developers should be aware that hardware can fail at any time. Data stored in memory can be corrupted because of memory failure. Messages being transmitted over a communication channel can be altered because of external noise.

Embedded developers are prepared for these situations. They use checksums or cyclic redundancy check (CRC) code to detect and, if possible, correct corrupted data.

The influence of environmental conditions

High temperature, low temperature, high humidity, vibration, dust, and other environmental factors can significantly affect the performance and reliability of hardware. While developers design their software to handle all potential hardware errors, it is common practice to test the system in different environments. Besides that, knowledge of environmental conditions can give an important clue when working on the root-cause analysis of an issue. 

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image