Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Comet for Data Science

You're reading from   Comet for Data Science Enhance your ability to manage and optimize the life cycle of your data science project

Arrow left icon
Product type Paperback
Published in Aug 2022
Publisher Packt
ISBN-13 9781801814430
Length 402 pages
Edition 1st Edition
Tools
Arrow right icon
Author (1):
Arrow left icon
Angelica Lo Duca Angelica Lo Duca
Author Profile Icon Angelica Lo Duca
Angelica Lo Duca
Arrow right icon
View More author details
Toc

Table of Contents (16) Chapters Close

Preface 1. Section 1 – Getting Started with Comet
2. Chapter 1: An Overview of Comet FREE CHAPTER 3. Chapter 2: Exploratory Data Analysis in Comet 4. Chapter 3: Model Evaluation in Comet 5. Section 2 – A Deep Dive into Comet
6. Chapter 4: Workspaces, Projects, Experiments, and Models 7. Chapter 5: Building a Narrative in Comet 8. Chapter 6: Integrating Comet into DevOps 9. Chapter 7: Extending the GitLab DevOps Platform with Comet 10. Section 3 – Examples and Use Cases
11. Chapter 8: Comet for Machine Learning 12. Chapter 9: Comet for Natural Language Processing 13. Chapter 10: Comet for Deep Learning 14. Chapter 11: Comet for Time Series Analysis 15. Other Books You May Enjoy

Building a machine learning project from setup to report

In this section, you will further improve the practical example of diamond cuts described in Chapter 3, Model Evaluation in Comet, and deployed in Chapter 6, Integrating Comet into DevOps. In this chapter, you will focus on the following aspects:

  • Reviewing the scenario
  • Selecting the best model
  • Calculating the SHAP value
  • Building the final report

Let’s start with the first step: reviewing the scenario.

Reviewing the scenario

As our use case, we will use the diamonds dataset provided by ggplot2 under the MIT licenses (https://ggplot2.tidyverse.org/reference/diamonds.html) and available on Kaggle as a CSV file (https://www.kaggle.com/shivam2503/diamonds). With respect to the original version, already described in Figure 3.3 in Chapter 3, we use the cleaned version produced in the same chapter and shown in the following figure:

Figure 8.6 – The cleaned version of...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image