Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Responsible AI in the Enterprise

You're reading from   Responsible AI in the Enterprise Practical AI risk management for explainable, auditable, and safe models with hyperscalers and Azure OpenAI

Arrow left icon
Product type Paperback
Published in Jul 2023
Publisher Packt
ISBN-13 9781803230528
Length 318 pages
Edition 1st Edition
Tools
Arrow right icon
Authors (2):
Arrow left icon
Heather Dawe Heather Dawe
Author Profile Icon Heather Dawe
Heather Dawe
Adnan Masood Adnan Masood
Author Profile Icon Adnan Masood
Adnan Masood
Arrow right icon
View More author details
Toc

Table of Contents (16) Chapters Close

Preface 1. Part 1: Bigot in the Machine – A Primer
2. Chapter 1: Explainable and Ethical AI Primer FREE CHAPTER 3. Chapter 2: Algorithms Gone Wild 4. Part 2: Enterprise Risk Observability Model Governance
5. Chapter 3: Opening the Algorithmic Black Box 6. Chapter 4: Robust ML – Monitoring and Management 7. Chapter 5: Model Governance, Audit, and Compliance 8. Chapter 6: Enterprise Starter Kit for Fairness, Accountability, and Transparency 9. Part 3: Explainable AI in Action
10. Chapter 7: Interpretability Toolkits and Fairness Measures – AWS, GCP, Azure, and AIF 360 11. Chapter 8: Fairness in AI Systems with Microsoft Fairlearn 12. Chapter 9: Fairness Assessment and Bias Mitigation with Fairlearn and the Responsible AI Toolbox 13. Chapter 10: Foundational Models and Azure OpenAI 14. Index 15. Other Books You May Enjoy

The ML life cycle

Reproducibility is crucial in ML to ensure consistent and replicable results. Integrating the MLOps life cycle promotes reproducibility, auditability, ethics, reliability, and trustworthiness in ML models. Auditability ensures the model behaves as expected and provides transparency of its workings and data usage. Ethical guidelines addressing privacy rights, data accuracy, and transparency are essential when deploying AI systems. A well-defined ML life cycle facilitates adherence to these guidelines. Model monitoring guarantees reliability by operationalizing the trustworthiness of ML models, particularly in high-risk applications and regulated industries. Implementing routine testing, validation by outside experts, and ongoing performance monitoring is essential. Clear explanations for decision-making and user control over their own data ensure a transparent, repeatable, and auditable AI system.

Adopting an ML life cycle

ML operationalization is the process...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image