Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Big Data Analysis with Python

You're reading from   Big Data Analysis with Python Combine Spark and Python to unlock the powers of parallel computing and machine learning

Arrow left icon
Product type Paperback
Published in Apr 2019
Publisher Packt
ISBN-13 9781789955286
Length 276 pages
Edition 1st Edition
Languages
Tools
Concepts
Arrow right icon
Authors (3):
Arrow left icon
Ivan Marin Ivan Marin
Author Profile Icon Ivan Marin
Ivan Marin
Sarang VK Sarang VK
Author Profile Icon Sarang VK
Sarang VK
Ankit Shukla Ankit Shukla
Author Profile Icon Ankit Shukla
Ankit Shukla
Arrow right icon
View More author details
Toc

Table of Contents (11) Chapters Close

Big Data Analysis with Python
Preface
1. The Python Data Science Stack FREE CHAPTER 2. Statistical Visualizations 3. Working with Big Data Frameworks 4. Diving Deeper with Spark 5. Handling Missing Values and Correlation Analysis 6. Exploratory Data Analysis 7. Reproducibility in Big Data Analysis 8. Creating a Full Analysis Report Appendix

Summary


In this chapter, we have learned how to maintain code reproducibility from a data science perspective through structured standards and practices to avoid duplicate work using the Jupyter notebook.

We started by gaining an understanding of what reproducibility is and how it impacts research and data science work. We looked into areas where we can improve code reproducibility, particularly looking at how we can maintain effective coding standards in terms of data reproducibility. Following that, we looked at important coding standards and practices to avoid duplicate work using the effective management of code through the segmentation of workflows, by developing functions for all key tasks, and how we can generalize coding to create libraries and packages from a reusability standpoint.

In the next chapter, we will learn how to use all the functionalities we have learned about so far to generate a full analysis report. We will also learn how to use various PySpark functionalities for...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image