Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Codeless Time Series Analysis with KNIME

You're reading from   Codeless Time Series Analysis with KNIME A practical guide to implementing forecasting models for time series analysis applications

Arrow left icon
Product type Paperback
Published in Aug 2022
Publisher Packt
ISBN-13 9781803232065
Length 392 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (4):
Arrow left icon
Daniele Tonini Daniele Tonini
Author Profile Icon Daniele Tonini
Daniele Tonini
Maarit Widmann Maarit Widmann
Author Profile Icon Maarit Widmann
Maarit Widmann
Corey Weisinger Corey Weisinger
Author Profile Icon Corey Weisinger
Corey Weisinger
KNIME AG KNIME AG
Author Profile Icon KNIME AG
KNIME AG
Arrow right icon
View More author details
Toc

Table of Contents (20) Chapters Close

Preface 1. Part 1: Time Series Basics and KNIME Analytics Platform
2. Chapter 1: Introducing Time Series Analysis FREE CHAPTER 3. Chapter 2: Introduction to KNIME Analytics Platform 4. Chapter 3: Preparing Data for Time Series Analysis 5. Chapter 4: Time Series Visualization 6. Chapter 5: Time Series Components and Statistical Properties 7. Part 2: Building and Deploying a Forecasting Model
8. Chapter 6: Humidity Forecasting with Classical Methods 9. Chapter 7: Forecasting the Temperature with ARIMA and SARIMA Models 10. Chapter 8: Audio Signal Classification with an FFT and a Gradient-Boosted Forest 11. Chapter 9: Training and Deploying a Neural Network to Predict Glucose Levels 12. Chapter 10: Predicting Energy Demand with an LSTM Model 13. Chapter 11: Anomaly Detection – Predicting Failure with No Failure Examples 14. Part 3: Forecasting on Mixed Platforms
15. Chapter 12: Predicting Taxi Demand on the Spark Platform 16. Chapter 13: GPU Accelerated Model for Multivariate Forecasting 17. Chapter 14: Combining KNIME and H2O to Predict Stock Prices 18. Answers 19. Other Books You May Enjoy

Understanding TSA

When analyzing business data, it’s quite common to focus on what happened at a particular point in time: sales figures at the end of the month, customer characteristics at the end of the year, conversion results at the end of a marketing campaign, and more. Even in the development of the most sophisticated ML models, in most cases, we collect information that refers to different objects at a specific instant in time (or by taking a few snapshots of historical data). This approach, which is absolutely valid and correct for many applications, not only in business, uses cross-sectional data as the basis for analytics: data collected by observing many subjects (such as individuals, companies, shops, countries, equipment, and more) at one point or period of time.

Although the fact of not considering the temporal factor in the analysis is widespread and rooted in common practice, there are several situations where the analysis of the temporal evolution of a phenomenon provides more complete and interesting results. In fact, it’s only through the analysis of the temporal dynamics of the data that it is possible to identify the presence of some peculiar characteristics of the phenomenon we are analyzing, be it sales/consumption data, rather than a physical parameter or a macroeconomic index. These characteristics that act over time, such as trends, periodic fluctuations, level changes, anomalous observations, turning points, and more can have an effect in the short or long term, and often, it is important to be able to measure them precisely. Furthermore, it is only by analyzing data over time that it is possible to provide a reliable quantitative estimate of what might occur in the future (whether immediate or not). Since economic conditions are constantly changing over time, data analysts must be able to assess and predict the effects of these changes in order to suggest the most appropriate actions to take for the future.

For these reasons, TSA can be a very useful tool in the hands of business analysts and data scientists when it comes to both describing the patterns of a phenomenon along the time axis and providing a reliable forecast for it. Through the use of the right tools, TSA can significantly expand the understanding of any variable of interest (typically numerical) such as sales, financial KPIs, logistic metrics, sensors’ measurements, and more. More accurate and less biased forecasts that have been obtained through quantitative TSA can be one of the most effective drivers of performance in many fields and industries.

In the next sections of this chapter, we will provide definitions, examples, and some additional elements to gain a further understanding of how to recognize some key features of time series and how to approach their analyses in a structured way.

You have been reading a chapter from
Codeless Time Series Analysis with KNIME
Published in: Aug 2022
Publisher: Packt
ISBN-13: 9781803232065
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image