Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Data Analytics for Marketing

You're reading from   Data Analytics for Marketing A practical guide to analyzing marketing data using Python

Arrow left icon
Product type Paperback
Published in May 2024
Publisher Packt
ISBN-13 9781803241609
Length 452 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Guilherme Diaz-Bérrio Guilherme Diaz-Bérrio
Author Profile Icon Guilherme Diaz-Bérrio
Guilherme Diaz-Bérrio
Arrow right icon
View More author details
Toc

Table of Contents (20) Chapters Close

Preface 1. Part 1: Fundamentals of Analytics FREE CHAPTER
2. Chapter 1: What is Marketing Analytics? 3. Chapter 2: Extracting and Exploring Data with Singer and pandas 4. Chapter 3: Design Principles and Presenting Results with Streamlit 5. Chapter 4: Econometrics and Causal Inference with Statsmodels and PyMC 6. Part 2: Planning Ahead
7. Chapter 5: Forecasting with Prophet, ARIMA, and Other Models Using StatsForecast 8. Chapter 6: Anomaly Detection with StatsForecast and PyMC 9. Part 3: Who and What to Target
10. Chapter 7: Customer Insights – Segmentation and RFM 11. Chapter 8: Customer Lifetime Value with PyMC Marketing 12. Chapter 9: Customer Survey Analysis 13. Chapter 10: Conjoint Analysis with pandas and Statsmodels 14. Part 4: Measuring Effectiveness
15. Chapter 11: Multi-Touch Digital Attribution 16. Chapter 12: Media Mix Modeling with PyMC Marketing 17. Chapter 13: Running Experiments with PyMC 18. Index 19. Other Books You May Enjoy

Delving deeper into some pitfalls

Theoretically, a single control can be shared across multiple treatments. The theory also says that a larger control can have benefits in terms of reducing the variance.

Assuming equal variances, the sample size of a two-sample t-test is given by  1 _  1 _ N T +  1 _ N C, which translates into the harmonic mean of the sample sizes. When one has one control with x users, k equally sized treatments with size 1 x _ k , the optimal control size is given by minimizing the sum  k _ 1 x + 1 _ x .

The solution is x =  1 _  _ k  + 1. For example, if you have three treatments, the optimal control size is not 25% but 36.6%, and the optimal treatment size is 21.1% each. With k = 9, the control should get 25%, and each variant only 8.3%.

However, one needs to be careful, in practice, of the following...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image