Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Delphi High Performance
Delphi High Performance

Delphi High Performance: Master the art of concurrency, parallel programming, and memory management to build fast Delphi apps , Second Edition

Arrow left icon
Profile Icon Primož Gabrijelčič
Arrow right icon
€15.99 €23.99
Full star icon Full star icon Full star icon Full star icon Half star icon 4.9 (12 Ratings)
eBook Jun 2023 452 pages 2nd Edition
eBook
€15.99 €23.99
Paperback
€29.99
Subscription
Free Trial
Renews at €18.99p/m
Arrow left icon
Profile Icon Primož Gabrijelčič
Arrow right icon
€15.99 €23.99
Full star icon Full star icon Full star icon Full star icon Half star icon 4.9 (12 Ratings)
eBook Jun 2023 452 pages 2nd Edition
eBook
€15.99 €23.99
Paperback
€29.99
Subscription
Free Trial
Renews at €18.99p/m
eBook
€15.99 €23.99
Paperback
€29.99
Subscription
Free Trial
Renews at €18.99p/m

What do you get with eBook?

Product feature icon Instant access to your Digital eBook purchase
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
Product feature icon AI Assistant (beta) to help accelerate your learning
OR
Modal Close icon
Payment Processing...
tick Completed

Billing Address

Table of content icon View table of contents Preview book icon Preview Book

Delphi High Performance

Profiling the Code

Now that we know what performance is and how to measure it, we can start speeding up our programs. This is, however, not an easy process. For starters, we must know which parts of the program are slowing us down, and that can sometimes be hard to determine.

We can, of course, start by guessing. This will sometimes work, but it will often just result in wasted time and frustration. It turns out that it is usually hard to tell what will be a slow part of a complex program. Even if we start by guessing, it is good if we can then confirm our assumption before we start rewriting the code.

We can do that by adding measurement code, which works great if a program is small or if we know which specific part we want to improve, but most of the time, it is better to use a specialized tool: a profiler.

In this chapter, we’ll look into both approaches, manual profiling and using an automated tool.

We will cover the following topics:

  • Why is it better to measure than to guess?
  • How to manually determine which part of the program is the slowest
  • What tools can we use to find the slow parts of a program?

Technical requirements

All code in this chapter was written with Delphi 11.3 Alexandria. It does not use the latest additions to the language, so most of the code can still be executed on Delphi XE and newer versions. You can find all the examples on GitHub at https://github.com/PacktPublishing/Delphi-High-Performance---Second-Edition/tree/main/ch2.

Don’t guess, measure!

There is only one way to get a good picture of the fast and slow parts of a program—by measuring it. We can do it manually by inserting time-measuring calls in the code, or we can use specialized tools. We have a name for measuring—profiling—and we call specialized tools for measuring profilers.

In the rest of this chapter, we’ll look at different techniques for measuring the execution speed. First, we will measure the now familiar program, SlowCode, with a simple software stopwatch, and then we’ll look at a few open source and commercial profilers.

Before we start, I’d like to point out a few basic rules that apply to all profiling techniques:

  • Always profile without the debugger. The debugger will slow the execution in unexpected places, and that will skew the results. If you are starting your program from the Delphi integrated development environment (IDE), just press Ctrl + Shift + F9 instead of F9.
  • Try not to do anything else on the computer while profiling. Other programs will take the CPU away from the measured program, which will make it run slower.
  • Take care that the program doesn’t wait for user action (data entry, button click) while profiling. This will completely skew the report.
  • Repeat the tests a few times. Execution times will differ because Windows (and any other operating system (OS) that Delphi supports) will always execute other tasks besides running your program.
  • All the preceding points especially hold true for multithreaded programs, which is an area explored in Chapters 7 to 10.

Profiling with TStopwatch

Delphi includes a helpful unit called System.Diagnostics, which implements a TStopwatch record. It allows us to measure time events with better precision than 1 millisecond and has a pretty exhaustive public interface, as shown in the following code fragment:

type
  TStopwatch = record
  public
    class function Create: TStopwatch; static;
    class function GetTimeStamp: Int64; static;
    procedure Reset;
    procedure Start;
    class function StartNew: TStopwatch; static;
    procedure Stop;
    property Elapsed: TTimeSpan read GetElapsed;
    property ElapsedMilliseconds: Int64 read
      GetElapsedMilliseconds;
    property ElapsedTicks: Int64 read GetElapsedTicks;
    class property Frequency: Int64 read FFrequency;
    class property IsHighResolution: Boolean read
      FIsHighResolution;
    property IsRunning: Boolean read FRunning;
  end;

To use a stopwatch, you first have to create it. You can call TStopwatch.Create to create a new stopped stopwatch or TStopwatch.StartNew to create a newly started stopwatch. As TStopwatch is implemented as record, there’s no need to destroy a stopwatch object.

When a stopwatch is started, it measures time. To start a stopwatch, call the Start method, and to stop it, call the Stop method. The IsRunning property will tell you whether the stopwatch is currently started. Call the Reset method to reset the stopwatch to zero.

TStopwatch contains a few functions that return the currently measured time. The most precise of them is ElapsedTicks, but as there is no built-in (public) function to convert this into standard time units, this function is hard to use. My recommendation is to just use the ElapsedMilliseconds property, which will give you elapsed (measured) time in milliseconds.

For a simple demo, this code will return 1,000 or a bit more:

function Measure1sec: int64;
var
  sw: TStopwatch;
begin
  sw := TStopwatch.StartNew;
  Sleep(1000);
  Result := sw.ElapsedMilliseconds;
end;

Let’s now use this function to measure the SlowMethod method.

First, you have to add the System.Diagnostics unit to the uses list:

uses
  System.SysUtils,
  System.Generics.Collections,
  System.Classes,
  System.Diagnostics;

Next, you have to create this stopwatch inside SlowMethod, stop it at the end, and write out the elapsed time:

function SlowMethod(highBound: Integer): TArray<Integer>;
var
 // existing variables
 sw: TStopwatch;
begin
  sw := TStopwatch.StartNew;
  // existing code
  sw.Stop;
  Writeln('SlowMethod: ', sw.ElapsedMilliseconds, ' ms');
end;

We can use this code to verify the theory that SlowCode has time complexity O(n2). To do this, we have to measure the execution times for different counts of processed numbers (different values entered at the How many numbers prompt).

I did some testing for selected values from 10,000 to 1,000,000 and got the following numbers:

Highest number

Execution time [ms]

10,000

15

25,000

79

50,000

250

75,000

506

100,000

837

250,000

4,515

500,000

15,564

750,000

30,806

1,000,000

54,219

Table 2.1 – Measured speed of the SlowCode program

If you repeat the tests, you will, of course, measure different values, but the growth rate should be the same.

For quick confirmation, I have plotted a scatter chart of this data in Excel and the result looks like a square function. To be more sure, I have added a power trendline, which created a function in the form of nc, where c was a constant that Excel calculated from the data. In the case of my specific measurements, this fitting function was y = 10-6 * x1.7751, which is not that far from x2:

Figure 2.1 – Curve fitting in Excel (left) and Wolfram Alpha (right)

Figure 2.1 – Curve fitting in Excel (left) and Wolfram Alpha (right)

Next, I repeated this curve-fitting process on the wonderful Wolfram Alpha (www.wolframalpha.com), where you can find a regression calculator widget, a tool designed specifically for this task. I entered measurements into the widget, and it calculated a fitting function of 4.76372×10^-8 * x2 + 0.0064733 * x - 143.666. If we ignore all unimportant factors and constants, the only part left is x2. Another confirmation for our analysis!

Now we know how the program behaves in global terms, but we still have no idea of which part of the code is the slowest. To find that out, we also have to measure the execution times of the ElementInDataDivides and Filter methods.

These two methods are called multiple times during the execution of the program, so we can’t just create and destroy a stopwatch each time Filter (for example) is executed. We have to create a global stopwatch, which is a bit inconvenient in this program because we have to introduce a global variable.

If you check the SlowCode_Stopwatch program, you’ll see that it actually creates three global stopwatches, one for each of the functions that we want to measure:

var
  Timing_ElementInData: TStopwatch;
  Timing_Filter: TStopwatch;
  Timing_SlowMethod: TStopwatch;

All three stopwatches are created (but not started!) when the program starts:

Timing_ElementInData := TStopwatch.Create;
Timing_Filter := TStopwatch.Create;
Timing_SlowMethod := TStopwatch.Create;

When the program ends, the code logs the elapsed time for all three stopwatches:

Writeln('Total time spent in SlowMethod: ',
  Timing_SlowMethod.ElapsedMilliseconds, ' ms');
Writeln('Total time spent in ElementInDataDivides: ',
  Timing_ElementInData.ElapsedMilliseconds, ' ms');
Writeln('Total time spent in Filter: ',
  Timing_Filter.ElapsedMilliseconds, ' ms');

In each of the three methods, we only have to start the stopwatch at the beginning and stop it at the end:

function SlowMethod(highBound: Integer): TArray<Integer>;
var
 // existing variables
 sw: TStopwatch;
begin
  sw := TStopwatch.StartNew;
  // existing code
  sw.Stop;
  Writeln('SlowMethod: ', sw.ElapsedMilliseconds, ' ms');
end;

The only tricky part is the ElementInDataDivides function, which calls Exit as soon as one element divides the value parameter. The simplest way to fix that is to wrap the existing code in a try .. finally handler and to stop the stopwatch in the finally part:

function ElementInDataDivides(data: TList<Integer>; value: Integer): boolean;
var
  i: Integer;
begin
  Timing_ElementInData.Start;
  try
    Result := True;
    for i in data do
      if (value <> i) and ((value mod i) = 0) then
        Exit;
    Result := False;
  finally
    Timing_ElementInData.Stop;
  end;
end;

If you run the program and play with it for a while and then exit, you’ll get a performance report. In my case, I got the following result:

Figure 2.2 – Time spent in various parts of the SlowCode program

Figure 2.2 – Time spent in various parts of the SlowCode program

We now know that most of the time is spent in ElementInDataDivides, but we don’t know how many calls to it were made directly from SlowMethod and how many from the Filter method. To find that out, we have to add two new global variables and some more code:

var
  Generate_ElementInData_ms: int64;
  Filter_ElementInData_ms: int64;
function SlowMethod(highBound: Integer): TArray<Integer>;
var
  i: Integer;
  temp: TList<Integer>;
begin
  Timing_SlowMethod.Start;
  temp := TList<Integer>.Create;
  try
    Timing_ElementInData.Reset;
    for i := 2 to highBound do
      if not ElementInDataDivides(temp, i) then
        temp.Add(i);
    Generate_ElementInData_ms := Generate_ElementInData_ms +
      Timing_ElementInData.ElapsedMilliseconds;
    Timing_ElementInData.Reset;
    Result := Filter(temp);
    Filter_ElementInData_ms := Filter_ElementInData_ms +
      Timing_ElementInData.ElapsedMilliseconds;
  finally
    FreeAndNil(temp);
  end;
  Timing_SlowMethod.Stop;
end;

The code (which can be found in the SlowCode_Stopwatch2 program) now resets the Timing_ElementInData stopwatch before the data generation phase and adds the value of the stopwatch to Generate_ElementInData_ms afterward. Then it resets the stopwatch again for the Filter phase and adds the value of the stopwatch to Filter_ElementInData_ms afterward.

In the end, that will give us the cumulative execution time for ElementInDataDivides called directly from SlowMethod in Generate_ElementInData_ms and the cumulative execution time for ElementInDataDivides called from Filter in Filter_ElementInData_ms.

A test run with an upper bound of 100,000 produced the following output:

Figure 2.3 – Detailed measurements of the SlowCode execution time

Figure 2.3 – Detailed measurements of the SlowCode execution time

Now we can be really sure that almost all the time is spent in ElementInDataDivides. We also know that approximately 75% of the time, it is called directly from SlowMethod and 25% of the time from the Filter method.

We are now ready to optimize the program. We can either improve the implementation to make it faster, replace it with a faster algorithm, or both.

Profilers

Measuring the speed of a program by inserting special code into the program by hand is perfect if you want to measure a very specific part of the code, but it becomes cumbersome if you don’t know exactly which part of the program you should focus on. In such cases, it is best to use specialized software: profilers.

Profilers can measure all kinds of parameters. Sure, they are mostly used for measuring execution speed, at a method or even on a line level, but they can do much more. They can display the call tree—a graph showing how methods call one another. They can show memory usage in a program so you can quickly find the one method constantly eating the memory. They can show you the coverage of your tests so you can see which code was tested and which was not. And much more.

They do that magic in two ways: sampling or instrumentation.

The sampling profiler looks at the state of your program at regular intervals (for example, 100 times per second) and, each time, checks which line of the code is currently being executed. Statistically, it will predominantly see lines of code that are executed most of the time.

Sampling profiling will give us only a rough overview of behavior inside the program, but it will do that without affecting the program speed, and because of that, it is excellent for taking a first look at some code.

Instrumenting profilers do their magic by changing—instrumenting—the code. They, in fact, do almost exactly the same kind of changing the code as we did by inserting the stopwatch calls.

There are two ways to perform instrumentation. A profiler can change the source code, or it can change the program binary. Source instrumenting profilers are rare because they are less safe to use (there’s always the possibility that a profiler will mess up the source) and because you have to recompile the code after it is instrumented (modified by the profiler).

Most of the instrumenting profilers on the market modify the binary code, which is a bit trickier to implement but doesn’t require recompilation and cannot destroy the source code.

The advantage of instrumentation over sampling is that the former can collect everything that is going on inside the program and not just a few samples here and there. The disadvantage is that instrumentation reduces the speed of the program. Although instrumenting profilers take extra care to optimize the code that is inserted into your program, executing this code in many instrumented methods can still take a long time.

The other problem is the amount of collected data. A short and fast method called 100,000 times in 1 second will generate 100,000 data samples in an instrumenting profiler and only 100 samples in a sampling profiler (provided that it samples the code 100 times a second).

Because of all that, instrumenting profilers are best used once we already know which part(s) of the program we want to focus on.

I’ll end this chapter with an overview of four profilers, two are open source and free (AsmProfiler and Sampling Profiler) and two are commercial (AQTime and Nexus Quality Suite (NQS)), to make it easier for you to choose the best fit for your situation. These four profilers are, of course, not your only options. If you need very precise profiling of short methods, check out ProDelphi (https://www.prodelphi.de). And if you need a high-end tool that will not only profile your application but help optimize it to its fullest potential, take a look at Intel’s VTune Amplifier (https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html).

AsmProfiler

AsmProfiler is a 32-bit instrumenting and sampling profiler written by André Mussche. Its source, along with the Windows exe, can be found at https://github.com/andremussche/asmprofiler. Although the latest version was released in 2019, it works well with the newest Delphi at the time of writing this book, 11.3 Alexandria.

The sampling and instrumenting profilers are used in different ways, so I’ll cover them separately.

To use AsmProfiler, you first have to unpack the release ZIP into a folder on your disk. That will create two subfolders—Sampling and Instrumenting. To start the sampling profiler, start AsmProfiling_Sampling from the Sampling folder and then click Start profiling.

AsmProfiler has two ways of starting a profiling session. You can start the program manually by clicking Select process in AsmProfiler and selecting your program from the list of running processes. Alternatively, you can click Select exe, browse to the compiled EXE of your program, and then click Start process now, which will start the program, or click Start sampling, which will start the program and also start sampling the code.

The reasoning behind the two different ways of starting the program is that you mostly want to profile a specific part of the program, so you would load it into the profiler, navigate to the specific part, click Start sampling, do the required steps in your program, click Stop sampling, and analyze the results. Sometimes, however, you would want to profile the very startup of the program, so you want sampling to start immediately after your program is launched. The following screenshot shows the initial AsmProfiler screen:

Figure 2.4 – Starting the profiling session in AsmProfiler

Figure 2.4 – Starting the profiling session in AsmProfiler

Sampling options can be configured in the Options group. You can set the Sampling interval value—how many milliseconds will pass between two samples. Setting this value to 4, for example, will generate 250 (1000/4) samples per second.

Setting the sampling interval to 0 enables a continuous sampling mode, which still leaves some time for threads running on the same CPU. (The sampling code calls Sleep(0) between taking two samples.) Setting it to -1 causes the samples to be taken as fast as possible. In effect, AsmProfiler will use one CPU core for itself.

You can also set the priority of sample-taking threads from the default, Normal. I will discuss threads and priorities in Chapter 7, Getting Started with the Parallel World.

After you have taken the samples and clicked Stop sampling, click the Show results button to analyze the results.

If you want to compare your results with mine, here are the steps to produce the results (as shown in the following screenshot):

  1. Start AsmProfiler.
  2. Click Select exe and select SlowCode.exe.
  3. Click Start process now.
  4. Click Start sampling.
  5. Enter 100,000 into the program.
  6. Click Stop sampling.
  7. Enter 0 into the program to exit.
  8. Click Show results.
  9. Click Results on the Sampling Results form:
Figure 2.5 – The result of a test run profiled with AsmProfiler’s Sampling profiler

Figure 2.5 – The result of a test run profiled with AsmProfiler’s Sampling profiler

AsmProfiler displays results organized by threads, but it automatically highlights the main thread, so you don’t have to care about that detail if your program doesn’t use multithreading.

In the result grid, it shows the module (main EXE or DLL), the name of the function, how many times the code was found to be in this function, and how many times (absolute and percentage) the code spent in that function (Own time), in all functions called from it (Child time), and both in that function and in all functions called from it (Own+Child).

If we sort results by the time spent only in the function (Own time), we’ll see that the TextIn$qqrr15System.TTextRec function comes to the top. This a function that reads console input (in the Readln statement) and we can safely ignore it.

The next one on the list, ElementInDataDivides$qqrp40..., is the one that interests us.

We can see that it was sampled 371 times (calls) and that it needed 0.6 seconds to execute. If you switch to the Detailed View tab and select this function, you’ll see in the Parent calls (called by ...) panel that it was called 258 times from SlowMethod and 113 times from the Filter method. In reality, of course, it was called many more times, but most of them were not seen by the sampling profiler.

In this view, we can also see how many times each line of a method was hit, which will give us a good idea about where the program spends most of the time. Unfortunately, we cannot sort the data on different criteria:

Figure 2.6 – A detailed view showing information for each line of the program

Figure 2.6 – A detailed view showing information for each line of the program

The names of the methods in these outputs are very weird, but that is how the Delphi compiler calls these methods internally. The part after the $ character encodes the parameter types. This process is called name mangling (and the part after $ is sometimes referred to as a decoration), and it enables us to use overloaded methods with the same name and different parameters—internally, they all have different names.

For example, the SlowMethod(highBound: Integer) function is internally known as SlowMethod$qqri. The qqr part specifies the fastcall calling convention (it describes how parameters are passed to the function in registers and on the stack), and i identifies one integer parameter.

AsmProfiler’s instrumenting profiler requires a bit more work. First, you have to copy AsmProfiler.dll from the Instrumenting subfolder into a folder on the Windows environment path or into the exe folder. Second, you have to copy Instrumenting\API\_uAsmProfDllLoader.pas into Delphi’s library path, into your project’s folder, or add this folder to your project’s search path.

Third, you have to add the _uAsmProfDllLoader unit to your project and call the following code. This will show the profiler’s main form on the screen:

if _uAsmProfDllLoader.LoadProfilerDll then
  _uAsmProfDllLoader.ShowProfileForm;

To start profiling, call _uAsmProfDllLoader.StartProfiler(False). To stop collecting data, call _uAsmProfDllLoader.StopProfiler. These two calls are not strictly necessary. You can also start and stop profiling from the profiler’s user interface. Modifying the code will, however, give you more control over the profiling process.

Before your program exits, unload the profiler DLL with _uAsmProfDllLoader.UnLoadProfilerDll.

Make sure that your program has the following compiler options correctly set:

  • Linker, Map file = detailed
  • Compiler, Optimization = off
  • Compiler, Stack frames = on

If you are using Delphi 11, you will also have to disable following linker options:

  • Data Execution Prevention compatible = off
  • Support address space layout randomization (ASLR) = off

The instrumenting profiler requires your program to process messages, making it mostly useless when used in Mr. Smith’s program, as it spends most of the time inside a Readln call (and is not processing messages). As I still wanted to show you how this profiler works, I have converted SlowCode into a more modern VCL version, SlowCode_VCL.

At first, I wanted to start/stop profiling right in SlowMethod:

function TfrmSlowCode.SlowMethod(highBound: Integer): TArray<Integer>;
var
  i: Integer;
  temp: TList<Integer>;
begin
  _uAsmProfDllLoader.StartProfiler(False);
  // existing code
  _uAsmProfDllLoader.StopProfiler;
end;

However, that attempt misfired, as AsmProfiler didn’t want to show profiling results for SlowCode. It turned out to be better to move the start/stop calls out of this method and into the method that calls SlowCode:

procedure TfrmSlowCode.btnTestClick(Sender: TObject);
var
  data: TArray<Integer>;
begin
  outResults.Text := '';
  outResults.Update;
  _uAsmProfDllLoader.StartProfiler(False);
  data := SlowMethod(inpHowMany.Value);
  _uAsmProfDllLoader.StopProfiler;
  ShowElements(data);
end;

A version of the program, ready for profiling with AsmProfiler, is stored in the SlowCode_VCL_Instrumented project. You will still have to download AsmProfiler and store AsmProfiler.dll and _uAsmProfDllLoader.pas in appropriate places.

When you start the program, a small form will appear alongside the program’s main form. From here, you can start and stop profiling, select items (methods) that should be profiled (Select items), and open the results of the profiling session (Show results):

Figure 2.7 – AsmProfiler’s instrumenting profiler

Figure 2.7 – AsmProfiler’s instrumenting profiler

We are interested only in three methods, so click the Select items button, select the ElementInDataDivides, Filter, and SlowMethod methods, and click OK:

Figure 2.8 – Selecting the methods to be profiled

Figure 2.8 – Selecting the methods to be profiled

Next, enter 100000 into the How many numbers field and click the Test button. You don’t have to start and stop the profiler, as the program will do that. When the values are calculated and displayed on the screen, click the Show results button. Don’t close the profiled program, as that would close the profiler form, too.

The results form of the instrumenting profiler is very similar to the equivalent form of the sampling profiler. The most interesting feature is the Unit overview tab, which combines detailed timing information and a call tree:

Figure 2.9 – The Unit overview display

Figure 2.9 – The Unit overview display

We can see that ElementInDataDivides is, in fact, called 99,999 times directly from SlowMethod and only 9592 times from the Filter method, not 258 and 113 times, as shown by the sampling profiler.

AsmProfiler gives a good combination of a global overview and detailed analysis, although it is rough around the edges and requires more effort on your part than more polished commercial profilers.

Sampling Profiler

Sampling Profiler is, as its name suggests, a sampling profiler for Delphi, written by Eric Grange. You can find it at https://www.delphitools.info. After years of inactivity, it was updated in 2023 and now officially supports all modern Delphis. It supports both 32- and 64-bit applications.

The strongest part of Sampling Profiler is its ability to be configured for multithreaded sampling. You can specify which CPUs will execute the profiler and which CPUs will run the profiled application. You can also focus on a specific thread by issuing a OutputDebugString('SAMPLING THREAD threadID') command from your code (replace threadID with the real ID of the thread you want to profile). It is also very simple to turn profiling on or off by calling OutputDebugString('SAMPLING ON') and OutputDebugString('SAMPLING OFF').

An interesting feature of Sampling Profiler, which other profilers don’t provide, is the ability to enable a web server in the profiler. After that, we can use a browser to connect to the profiler (if firewalls allow us, of course), and we get an instant insight into the currently most executed lines of our program:

Figure 2.10 – A live status view from a remote location

Figure 2.10 – A live status view from a remote location

The weakest point of Sampling Profiler is its complete inability to select methods that are of interest to us. As we can see in the following screenshot, we get some methods from System.Generics.Collections mixed between methods from SlowCode. This only distracts us from our task—trying to find the slow parts of SlowCode.

Saying all that, I must admit that the display of profiling results is really neatly implemented. The results view is simple, clean, and easy to use:

Figure 2.11 – The simple and effective result view

Figure 2.11 – The simple and effective result view

Sampling Profiler would be a perfect solution for occasional profiling if it would only allow us to select topics of interest.

AQTime

AQTime is a performance and memory profiler for C/C++, Delphi, .NET, Java, and Silverlight, produced by SmartBear Software. It supports 32- and 64-bit applications and can be found at https://www.smartbear.com.

Previously, a special Standard version of AQTime was included with RAD Studio, C++Builder, and Delphi. This offer was only available for releases XE to XE8 and the licensing was not renewed after that. If you want to use AQTime with any other Delphi release, you have to buy AQTime Professional.

For testing purposes, you can install a trial version of AQTime Professional, which will only run for six days. Dedicate some time to testing and use it wisely!

AQTime Professional supports all Delphi versions from 2006 to 10.4 Sydney, and you can even use it in Visual Studio, which is a great plus for multiplatform developers. It contains a variety of profilers—from the performance profiler (binary instrumenting profiler) and the sampling profiler to the coverage profiler (to see which parts of the program were executed) and more specific tools such as BDE SQL profiler, static analysis (a code analysis tool, which is not really a profiler), and more.

It integrates nicely into the Delphi IDE, but you can also use it as a standalone application. That gives you more flexibility during the profiling and result analysis, and that’s why I also used the standalone AQTime Professional for the examples. Version 8 (current at the time of writing) does not integrate with the Delphi 11 IDE, but you can still profile Delphi 11 programs with the standalone profiler.

To prepare your program for profiling, make sure that the following compiler options are set:

  • Compiler, Stack frames = on
  • Compiler, Debug information = Debug information
  • Compiler, Local symbols = true
  • Linker, Debug information = true

In order for AQTime to be able to find the source file for your project, you have to specify a search path. Go to Options | Options, then select General | Search directory, and add all the folders with your source files.

Next, you can choose to profile all units, but unless you are using a sampling profiler, this will slow down the execution in a typical program a lot. It is better to select just a few units or, as in our example, just a few methods.

The easiest way to do that is to create a new profiling area, and the easiest way to do that is to select one or more methods in the left tree (use Shift + click and Ctrl + click), then right-click and select Add selected to | New profiling area. After that, you can add additional methods to that profiling area by right-clicking and selecting Add selected to | Existing profiling area or simply with drag-and-drop.

When creating a new profiling area, you also have to choose whether to profile on a method or on a line level by checking or unchecking the Collect info about lines checkbox:

Figure 2.12 – Creating a new profiling area

Figure 2.12 – Creating a new profiling area

Then start the program from AQTime—or select the AQTime | Run with profiling menu from Delphi, do the necessary steps you want to profile, and exit. AQTime will show the profiling results. Similar to all other profilers, it will show a grid with measured methods, the net time spent in each, time with children, and a hit count indicator—an indicator showing how many times the method executed.

More interesting info is hiding in the lower panel. There is a very detailed call graph, which displays a call tree for the selected method, and a very useful Editor panel, which shows the source together with the hit count information for each line:

Figure 2.13 – The Editor view showing the hit count for instrumented methods

Figure 2.13 – The Editor view showing the hit count for instrumented methods

AQTime is a great tool, provided that you stay away from the very limited Standard edition and go directly for Professional.

The Nexus Quality Suite

NQS is a successor to the long-defunct TurboPower’s SleuthQA, published by NexusQA Pty Ltd. It supports 32- and 64-bit applications written in Delphi from 5 to 11.3 Alexandria. You can find it at www.nexusdb.com.

The trial version has fewer limitations than AQTime’s. Some functions are disabled, and some are limited in the quantity of collected data. Still, the program is not so limited that you wouldn’t be able to test it out.

NQS integrates into Delphi’s Tools menu and extends it with all the profilers it brings to Delphi. Of the most interest to us are Method Timer, an instrumenting profiler working at a method level, and Line Timer, an instrumenting profiler working at a line level. There is also Block Timer, an instrumenting profiler working on a block level (a for loop, for example), which was not working correctly at the time of writing this book and so I wasn’t able to test it. That’s really bad luck, as there are no other profilers for Delphi that work on a block level, and it would be really interesting to compare it with more standard approaches.

A few other tools are also interesting from the profiling viewpoint. Coverage Analyst will help you analyze code coverage, which is an important part of unit testing. After all, you definitely want to know whether your unit tests test all of the methods in a unit or not.

Also interesting is CodeWatch, which hunts for bugs in code by looking for memory and resource leaks.

All these profilers, with the exception of CodeWatch, are available in 32-bit and 64-bit versions, although the 64-bit operation is not as stable as in the 32-bit counterparts. I was only able to use Line Timer in 32-bit mode, for example, while Method Timer worked flawlessly in 32-bit and 64-bit modes.

Both Method Timer and Line Timer require no special preparation. You just have to have debug information turned on in the linker options.

When you start Method Timer, a profiler window opens. Click on the Routines button to select methods to profile. To change the profiling status of a method, double-click its name or right-click and select Profile Status | Enable Profile Status For Selected.

When you are done, press F9 to start the program, go through the steps that you want to profile, and exit the program.

The program will then display basic timing information, including net time per method and gross time (what other programs call “time with children”). If you click on a method, the lower two panes will display information about the methods that called the current method and the methods that were called from the current method.

If you double-click on a method, another window will appear showing the source code for the selected method but without any information about the profiling results:

Figure 2.14 – The Method Timer results window

Figure 2.14 – The Method Timer results window

Line Timer has a similar user interface. First, you select the methods to be profiled in the Routines view, then you run the program, and at the end, examine the results in the Line Times window.

This profiler has a display that is a bit different from other profilers that support line-level profiling. It is not grouped by methods but by line numbers. This gives us an immediate overview of the most critical part of the code but is hard to integrate into a bigger picture.

As in Method Timer, a double-click on a line in the results grid opens up an editor window that displays the source code, together with the time spent in each profiled line and the number of times this line was executed:

Figure 2.15 – Line Timer with built-in code display

Figure 2.15 – Line Timer with built-in code display

NQS is a nice set of tools, and we can only hope that its stability improves with future releases.

Summary

In this chapter, we looked into the topic of profiling. We used a manual approach and specialized tools—profilers—to find the slowest part of a simple program. With this, we have confirmed the results of our analysis of the SlowCode program from the previous chapter.

In the next chapter, I’ll briefly return to the topic of selecting the correct algorithm for the job. With a few examples, I’ll show you how an algorithm can make or break a program’s performance.

Left arrow icon Right arrow icon
Download code icon Download Code

Key benefits

  • Discover external programming libraries that will speed up your programming and code
  • Learn to integrate external libraries into Delphi programs
  • Build fast Delphi applications using concurrency, parallel programming, and memory management

Description

Performance matters! Users hate to use programs that are not responsive to interactions or run too slow to be useful. While becoming a programmer is simple enough, you require dedication and hard work to achieve an advanced level of programming proficiency where you know how to write fast code. This book begins by helping you explore algorithms and algorithmic complexity and continues by describing tools that can help you find slow parts of your code. Subsequent chapters will provide you with practical ideas about optimizing code by doing less work or doing it in a smarter way. The book also teaches you how to use optimized data structures from the Spring4D library, along with exploring data structures that are not part of the standard Delphi runtime library. The second part of the book talks about parallel programming. You’ll learn about the problems that only occur in multithreaded code and explore various approaches to fixing them effectively. The concluding chapters provide instructions on writing parallel code in different ways – by using basic threading support or focusing on advanced concepts such as tasks and parallel patterns. By the end of this book, you’ll have learned to look at your programs from a totally different perspective and will be equipped to effortlessly make your code faster than it is now.

Who is this book for?

This book is for all Delphi programmers. Whether you’re a beginner or an accomplished programmer, you will find something interesting. Even though the focus is on the latest Delphi release, the code uses only standard Delphi syntax without syntactic additions from the latest releases, and most of it should compile and run in any Delphi from XE7 onward. If you’re using an older version of Delphi, don’t despair! Most of the concepts in this book do not depend on a specific Delphi version and will be useful for everyone.

What you will learn

  • Get to grips with algorithmic complexity and learn how to recognize it
  • Use tools to determine program runtime behavior
  • Speed up programs by doing less instead of more
  • Discover the internal workings of Delphi data structures
  • Gain an understanding of Delphi's memory manager
  • Find out how to write low-level parallel programs with TThread
  • Use parallel patterns from the PPL and OTL libraries to write fast code
  • Include external code, written in C or C++, in Delphi programs

Product Details

Country selected
Publication date, Length, Edition, Language, ISBN-13
Publication date : Jun 30, 2023
Length: 452 pages
Edition : 2nd
Language : English
ISBN-13 : 9781805128335
Category :

What do you get with eBook?

Product feature icon Instant access to your Digital eBook purchase
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
Product feature icon AI Assistant (beta) to help accelerate your learning
OR
Modal Close icon
Payment Processing...
tick Completed

Billing Address

Product Details

Publication date : Jun 30, 2023
Length: 452 pages
Edition : 2nd
Language : English
ISBN-13 : 9781805128335
Category :

Packt Subscriptions

See our plans and pricing
Modal Close icon
€18.99 billed monthly
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Simple pricing, no contract
€189.99 billed annually
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just €5 each
Feature tick icon Exclusive print discounts
€264.99 billed in 18 months
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just €5 each
Feature tick icon Exclusive print discounts

Frequently bought together


Stars icon
Total €57.97 €84.97 €27.00 saved
Expert Delphi
€30.99 €34.99
Delphi High Performance
€29.99
Delphi GUI Programming with FireMonkey
€41.99
Total €57.97€84.97 €27.00 saved Stars icon
Banner background image

Table of Contents

14 Chapters
Chapter 1: About Performance Chevron down icon Chevron up icon
Chapter 2: Profiling the Code Chevron down icon Chevron up icon
Chapter 3: Fixing the Algorithm Chevron down icon Chevron up icon
Chapter 4: Don’t Reinvent, Reuse Chevron down icon Chevron up icon
Chapter 5: Fine-Tuning the Code Chevron down icon Chevron up icon
Chapter 6: Memory Management Chevron down icon Chevron up icon
Chapter 7: Getting Started with the Parallel World Chevron down icon Chevron up icon
Chapter 8: Working with Parallel Tools Chevron down icon Chevron up icon
Chapter 9: Exploring Parallel Practices Chevron down icon Chevron up icon
Chapter 10: More Parallel Patterns Chevron down icon Chevron up icon
Chapter 11: Using External Libraries Chevron down icon Chevron up icon
Chapter 12: Best Practices Chevron down icon Chevron up icon
Index Chevron down icon Chevron up icon
Other Books You May Enjoy Chevron down icon Chevron up icon

Customer reviews

Top Reviews
Rating distribution
Full star icon Full star icon Full star icon Full star icon Half star icon 4.9
(12 Ratings)
5 star 91.7%
4 star 8.3%
3 star 0%
2 star 0%
1 star 0%
Filter icon Filter
Top Reviews

Filter reviews by




Charles Chambers Jan 19, 2024
Full star icon Full star icon Full star icon Full star icon Full star icon 5
Great and packed with a lot of good info!
Feefo Verified review Feefo
Tiny Oct 10, 2023
Full star icon Full star icon Full star icon Full star icon Full star icon 5
In all fairness, I haven't worked a lot with Delphi. Most of my work centers deal with platforms. As we bring on more customers, some of the challenges occur in helping those apps run better and they all need better data. This book was perfect in picking and using the right tools and algorithms to do massively parallel processing in finding the right data. I also really liked the emphasis on building observability tools in to make sure one can capture metrics and truly get the best data performance.
Amazon Verified review Amazon
David Izada Rodriguez Jul 05, 2023
Full star icon Full star icon Full star icon Full star icon Full star icon 5
Everyone programming with Delphi will need to optimize their programs.Some programs focus on the customer by using a beautiful user interface, showing charts, or delegating tasks to the database.Other programs must solve complex tasks that could make them too slow for practical purposes.This kind of program, limited by the hardware, memory, or size of the problem, can require careful optimization.This book describes program complexity with simple examples.It also shows many ways to improve Delphi code performance.The first step is to discover where your program spends most of its running time. That is profiling. There are several examples of using it on real programs.You can improve performance by using better algorithms.In this book, the author shows how to use one of the best Delphi libraries, Spring4D.Another way to achieve much higher performance is to use parallel programming.Delphi includes the class TThread and several synchronization classes for this kind of scenario.After a detailed analysis, the author extracts some valuable parts of its OmniThreadLibrary to illustrate how to improve what is standard in Delphi.Finally, sometimes it is unnecessary to reinvent the wheel because the solution was already implemented in another language. There is a section about how to link external libraries to Delphi.As the cherry on top, the book finished by describing a good selection of "best practices".This book is the perfect companion for any Delphi developer.All the code used in the book is also in GitHub!Congratulations!
Amazon Verified review Amazon
Swift Expat Aug 28, 2023
Full star icon Full star icon Full star icon Full star icon Full star icon 5
I was asked to be an early reviewer for this book and one of the examples that describes deadlocks was exactly the problem in some parallel code. Primoz gave an introduction and example that filled in the gaps to understand where to look and I solved my problem.I believe every developer would benefit from at least 2 sections of the book but review the table of contents. Some of the sections I will use infrequently so I will choose to skip over the parts that are too complex for me to fully grasp and do not currently apply.The book has very short code snippets, look at the full examples on Github for code that you can actually compile. As stated by the author the book is to focus on a code block, my view is it is something like a course book with homework that you are going to have to review in Delphi. For me it is a good mix of hands-on guided reading and learning.The author writes much like how I imagine a teacher in a classroom to present so there is often a review of what we have learned and what is coming. For me this was a welcome break and a little bit of humor when I imagine him speaking. If you find it annoying, you can simply skip over the 2-3 sentences.I appreciate that @Primož Gabrijelčič took the time to share his knowledge and has updated to a 2nd Edition.
Amazon Verified review Amazon
RODNEY K NICHOLLS Jul 20, 2023
Full star icon Full star icon Full star icon Full star icon Full star icon 5
This book covers a wide range of topics, from algorithm improvement to tools for finding slow code and parallel programming. It does a great job of explaining complex concepts in a clear and concise way, and the book is full of practical examples that can help you apply the concepts in your own code.The book covers a wide range of topics. Delphi High Performance covers all of the major areas of performance, so you can get a well-rounded understanding of how to write high-performance code.The demo examples that come with the book are comprehensive and clearly demonstrate the points the author is explaining. He doesn't just talk about the concepts in theory, he shows you how to apply them in your own code. This makes the book very valuable for anyone who wants to improve the performance of their Delphi applications.Overall, Delphi High Performance is an excellent book for Delphi developers who want to learn how to write high-performance code. The book is well-written, informative, and full of practical examples. I highly recommend it to anyone who wants to improve the performance of their Delphi applications.
Amazon Verified review Amazon
Get free access to Packt library with over 7500+ books and video courses for 7 days!
Start Free Trial

FAQs

How do I buy and download an eBook? Chevron down icon Chevron up icon

Where there is an eBook version of a title available, you can buy it from the book details for that title. Add either the standalone eBook or the eBook and print book bundle to your shopping cart. Your eBook will show in your cart as a product on its own. After completing checkout and payment in the normal way, you will receive your receipt on the screen containing a link to a personalised PDF download file. This link will remain active for 30 days. You can download backup copies of the file by logging in to your account at any time.

If you already have Adobe reader installed, then clicking on the link will download and open the PDF file directly. If you don't, then save the PDF file on your machine and download the Reader to view it.

Please Note: Packt eBooks are non-returnable and non-refundable.

Packt eBook and Licensing When you buy an eBook from Packt Publishing, completing your purchase means you accept the terms of our licence agreement. Please read the full text of the agreement. In it we have tried to balance the need for the ebook to be usable for you the reader with our needs to protect the rights of us as Publishers and of our authors. In summary, the agreement says:

  • You may make copies of your eBook for your own use onto any machine
  • You may not pass copies of the eBook on to anyone else
How can I make a purchase on your website? Chevron down icon Chevron up icon

If you want to purchase a video course, eBook or Bundle (Print+eBook) please follow below steps:

  1. Register on our website using your email address and the password.
  2. Search for the title by name or ISBN using the search option.
  3. Select the title you want to purchase.
  4. Choose the format you wish to purchase the title in; if you order the Print Book, you get a free eBook copy of the same title. 
  5. Proceed with the checkout process (payment to be made using Credit Card, Debit Cart, or PayPal)
Where can I access support around an eBook? Chevron down icon Chevron up icon
  • If you experience a problem with using or installing Adobe Reader, the contact Adobe directly.
  • To view the errata for the book, see www.packtpub.com/support and view the pages for the title you have.
  • To view your account details or to download a new copy of the book go to www.packtpub.com/account
  • To contact us directly if a problem is not resolved, use www.packtpub.com/contact-us
What eBook formats do Packt support? Chevron down icon Chevron up icon

Our eBooks are currently available in a variety of formats such as PDF and ePubs. In the future, this may well change with trends and development in technology, but please note that our PDFs are not Adobe eBook Reader format, which has greater restrictions on security.

You will need to use Adobe Reader v9 or later in order to read Packt's PDF eBooks.

What are the benefits of eBooks? Chevron down icon Chevron up icon
  • You can get the information you need immediately
  • You can easily take them with you on a laptop
  • You can download them an unlimited number of times
  • You can print them out
  • They are copy-paste enabled
  • They are searchable
  • There is no password protection
  • They are lower price than print
  • They save resources and space
What is an eBook? Chevron down icon Chevron up icon

Packt eBooks are a complete electronic version of the print edition, available in PDF and ePub formats. Every piece of content down to the page numbering is the same. Because we save the costs of printing and shipping the book to you, we are able to offer eBooks at a lower cost than print editions.

When you have purchased an eBook, simply login to your account and click on the link in Your Download Area. We recommend you saving the file to your hard drive before opening it.

For optimal viewing of our eBooks, we recommend you download and install the free Adobe Reader version 9.