Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Machine Learning with R

You're reading from   Machine Learning with R Expert techniques for predictive modeling

Arrow left icon
Product type Paperback
Published in Apr 2019
Publisher Packt
ISBN-13 9781788295864
Length 458 pages
Edition 3rd Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Brett Lantz Brett Lantz
Author Profile Icon Brett Lantz
Brett Lantz
Arrow right icon
View More author details
Toc

Table of Contents (16) Chapters Close

Preface 1. Introducing Machine Learning FREE CHAPTER 2. Managing and Understanding Data 3. Lazy Learning – Classification Using Nearest Neighbors 4. Probabilistic Learning – Classification Using Naive Bayes 5. Divide and Conquer – Classification Using Decision Trees and Rules 6. Forecasting Numeric Data – Regression Methods 7. Black Box Methods – Neural Networks and Support Vector Machines 8. Finding Patterns – Market Basket Analysis Using Association Rules 9. Finding Groups of Data – Clustering with k-means 10. Evaluating Model Performance 11. Improving Model Performance 12. Specialized Machine Learning Topics Other Books You May Enjoy
Leave a review - let other readers know what you think
Index

What this book covers

Chapter 1, Introducing Machine Learning, presents the terminology and concepts that define and distinguish machine learners, as well as a method for matching a learning task with the appropriate algorithm.

Chapter 2, Managing and Understanding Data, provides an opportunity to get your hands dirty working with data in R. Essential data structures and procedures used for loading, exploring, and understanding data are discussed.

Chapter 3, Lazy Learning – Classification Using Nearest Neighbors, teaches you how to understand and apply a simple yet powerful machine learning algorithm to your first real-world task: identifying malignant samples of cancer.

Chapter 4, Probabilistic Learning – Classification Using Naive Bayes, reveals the essential concepts of probability that are used in cutting-edge spam filtering systems. You'll learn the basics of text mining in the process of building your own spam filter.

Chapter 5, Divide and Conquer – Classification Using Decision Trees and Rules, explores a couple of learning algorithms whose predictions are not only accurate, but also easily explained. We'll apply these methods to tasks where transparency is important.

Chapter 6, Forecasting Numeric Data – Regression Methods, introduces machine learning algorithms used for making numeric predictions. As these techniques are heavily embedded in the field of statistics, you will also learn the essential metrics needed to make sense of numeric relationships.

Chapter 7, Black Box Methods – Neural Networks and Support Vector Machines, covers two complex but powerful machine learning algorithms. Though the math may appear intimidating, we will work through examples that illustrate their inner workings in simple terms.

Chapter 8, Finding Patterns – Market Basket Analysis Using Association Rules, exposes the algorithm used in the recommendation systems employed by many retailers. If you've ever wondered how retailers seem to know your purchasing habits better than you know yourself, this chapter will reveal their secrets.

Chapter 9, Finding Groups of Data – Clustering with k-means, is devoted to a procedure that locates clusters of related items. We'll utilize this algorithm to identify profiles within an online community.

Chapter 10, Evaluating Model Performance, provides information on measuring the success of a machine learning project and obtaining a reliable estimate of the learner's performance on future data.

Chapter 11, Improving Model Performance, reveals the methods employed by the teams at the top of machine learning competition leaderboards. If you have a competitive streak, or simply want to get the most out of your data, you'll need to add these techniques to your repertoire.

Chapter 12, Specialized Machine Learning Topics, explores the frontiers of machine learning. From working with big data to making R work faster, the topics covered will help you push the boundaries of what is possible with R.

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image