Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Mastering Apache Spark 2.x
Mastering Apache Spark 2.x

Mastering Apache Spark 2.x: Advanced techniques in complex Big Data processing, streaming analytics and machine learning , Second Edition

eBook
€22.99 €32.99
Paperback
€41.99
Subscription
Free Trial
Renews at €18.99p/m
:

What do you get with a Packt Subscription?

Free for first 7 days. $19.99 p/m after that. Cancel any time!
Product feature icon Unlimited ad-free access to the largest independent learning library in tech. Access this title and thousands more!
Product feature icon 50+ new titles added per month, including many first-to-market concepts and exclusive early access to books as they are being written.
Product feature icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Product feature icon Thousands of reference materials covering every tech concept you need to stay up to date.
Subscribe now
View plans & pricing
Table of content icon View table of contents Preview book icon Preview Book

Mastering Apache Spark 2.x

Apache Spark SQL

In this chapter, we will examine ApacheSparkSQL, SQL, DataFrames, and Datasets on top of Resilient Distributed Datasets (RDDs). DataFrames were introduced in Spark 1.3, basically replacing SchemaRDDs, and are columnar data storage structures roughly equivalent to relational database tables, whereas Datasets were introduced as experimental in Spark 1.6 and have become an additional component in Spark 2.0.

We have tried to reduce the dependency between individual chapters as much as possible in order to give you the opportunity to work through them as you like. However, we do recommend that you read this chapter because the other chapters are dependent on the knowledge of DataFrames and Datasets.

This chapter will cover the following topics:

  • SparkSession
  • Importing and saving data
  • Processing the text files
  • Processing the JSON files
  • Processing the Parquet files
  • DataSource...

The SparkSession--your gateway to structured data processing

The SparkSession is the starting point for working with columnar data in Apache Spark. It replaces SQLContext used in previous versions of Apache Spark. It was created from the Spark context and provides the means to load and save data files of different types using DataFrames and Datasets and manipulate columnar data with SQL, among other things. It can be used for the following functions:

  • Executing SQL via the sql method
  • Registering user-defined functions via the udf method
  • Caching
  • Creating DataFrames
  • Creating Datasets
The examples in this chapter are written in Scala as we prefer the language, but you can develop in Python, R, and Java as well. As stated previously, the SparkSession is created from the Spark context.

Using the SparkSession allows you to implicitly convert RDDs into DataFrames or Datasets. For instance...

Importing and saving data

We wanted to add this section about importing and saving data here, even though it is not purely about Spark SQL, so that concepts such as Parquet and JSON file formats could be introduced. This section also allows us to cover how to access saved data in loose text as well as the CSV, Parquet, and JSON formats conveniently in one place.

Processing the text files

Using SparkContext, it is possible to load a text file in RDD using the textFile method. Additionally, the wholeTextFile method can read the contents of a directory to RDD. The following examples show you how a file, based on the local filesystem (file://) or HDFS (hdfs://), can be read to a Spark RDD. These examples show you that the data will...

Understanding the DataSource API

The DataSource API was introduced in Apache Spark 1.1, but is constantly being extended. You have already used the DataSource API without knowing when reading and writing data using SparkSession or DataFrames.

The DataSource API provides an extensible framework to read and write data to and from an abundance of different data sources in various formats. There is built-in support for Hive, Avro, JSON, JDBC, Parquet, and CSV and a nearly infinite number of third-party plugins to support, for example, MongoDB, Cassandra, ApacheCouchDB, Cloudant, or Redis.

Usually, you never directly use classes from the DataSource API as they are wrapped behind the read method of SparkSession or the write method of the DataFrame or Dataset. Another thing that is hidden from the user is schema discovery.

...

DataFrames

We have already used DataFrames in previous examples; it is based on a columnar format. Temporary tables can be created from it but we will expand on this in the next section. There are many methods available to the data frame that allow data manipulation and processing.

Let's start with a simple example and load some JSON data coming from an IoT sensor on a washing machine. We are again using the Apache Spark DataSource API under the hood to read and parse JSON data. The result of the parser is a data frame. It is possible to display a data frame schema as shown here:

As you can see, this is a nested data structure. So, the doc field contains all the information that we are interested in, and we want to get rid of the meta information that Cloudant/ApacheCouchDB added to the original JSON file. This can be accomplished by a call to the select method on the DataFrame...

Using SQL

After using the previous Scala example to create a data frame from a JSON input file on HDFS, we can now define a temporary table based on the data frame and run SQL against it.

The following example shows you the temporary table called washing_flat being defined and a row count being created using count(*):

The schema for this data was created on the fly (inferred). This is a very nice function of the Apache Spark DataSource API that has been used when reading the JSON file from HDFS using the SparkSession object. However, if you want to specify the schema on your own, you can do so.

Defining schemas manually

So first, we have to import some classes. Follow the code to do this:

import org.apache.spark.sql.types._

So...

Using Datasets

This API as been introduced since Apache Spark 1.6 as experimental and finally became a first-class citizen in Apache Spark 2.0. It is basically a strongly typed version of DataFrames.

DataFrames are kept for backward compatibility and are not going to be deprecated for two reasons. First, a DataFrame since Apache Spark 2.0 is nothing else but a Dataset where the type is set to Row. This means that you actually lose the strongly static typing and fall back to a dynamic typing. This is also the second reason why DataFrames are going to stay. Dynamically typed languages such as Python or R are not capable of using Datasets because there isn't a concept of strong, static types in the language.

So what are Datasets exactly? Let's create one:

import spark.implicits._
case class Person(id: Long, name: String)
val caseClassDS = Seq(Person(1,"Name1")...

The SparkSession--your gateway to structured data processing


The SparkSession is the starting point for working with columnar data in Apache Spark. It replaces SQLContext used in previous versions of Apache Spark. It was created from the Spark context and provides the means to load and save data files of different types using DataFrames and Datasets and manipulate columnar data with SQL, among other things. It can be used for the following functions:

  • Executing SQL via the sql method
  • Registering user-defined functions via the udf method
  • Caching
  • Creating DataFrames
  • Creating Datasets

Note

The examples in this chapter are written in Scala as we prefer the language, but you can develop in Python, R, and Java as well. As stated previously, the SparkSession is created from the Spark context.

Using the SparkSession allows you to implicitly convert RDDs into DataFrames or Datasets. For instance, you can convert RDD into a DataFrame or Dataset by calling the toDF or toDS methods:

 import spark.implicits._...

Importing and saving data


We wanted to add this section about importing and saving data here, even though it is not purely about Spark SQL, so that concepts such as Parquet and JSON file formats could be introduced. This section also allows us to cover how to access saved data in loose text as well as the CSV, Parquet, and JSON formats conveniently in one place.

Processing the text files

Using SparkContext, it is possible to load a text file in RDD using the textFile method. Additionally, the wholeTextFile method can read the contents of a directory to RDD. The following examples show you how a file, based on the local filesystem (file://) or HDFS (hdfs://), can be read to a Spark RDD. These examples show you that the data will be divided into six partitions for increased performance. The first two examples are the same as they both load a file from the Linux filesystem, whereas the last one resides in HDFS:

sc.textFile("/data/spark/tweets.txt",6)
sc.textFile("file:///data/spark/tweets.txt...

Understanding the DataSource API


The DataSource API was introduced in Apache Spark 1.1, but is constantly being extended. You have already used the DataSource API without knowing when reading and writing data using SparkSession or DataFrames.

The DataSource API provides an extensible framework to read and write data to and from an abundance of different data sources in various formats. There is built-in support for Hive, Avro, JSON, JDBC, Parquet, and CSV and a nearly infinite number of third-party plugins to support, for example, MongoDB, Cassandra, ApacheCouchDB, Cloudant, or Redis.

Usually, you never directly use classes from the DataSource API as they are wrapped behind the read method of SparkSession or the write method of the DataFrame or Dataset. Another thing that is hidden from the user is schema discovery.

Implicit schema discovery

One important aspect of the DataSource API is implicit schema discovery. For a subset of data sources, implicit schema discovery is possible. This means...

Left arrow icon Right arrow icon
Download code icon Download Code

Key benefits

  • Master the art of real-time Big Data processing using Apache Spark 2.x
  • Perform machine learning, deep learning and streaming data analytics by extending the most up-to-date functionalities of Apache Spark
  • An advanced guide with a unique combination of tips, instructions and practical examples on using Apache Spark effectively

Description

Apache Spark is an in-memory, cluster-based Big Data processing system that provides a wide range of functionalities such as graph processing, machine learning, stream processing, and more. This book will take your knowledge of Apache Spark to the next level by teaching you how to expand Spark’s functionality and build your data flows and machine/deep learning programs on top of the platform. The book starts with a quick overview of the Apache Spark ecosystem, and introduces you to the new features and capabilities in Apache Spark 2.x. You will then work with the different modules in Apache Spark such as interactive querying with Spark SQL, using DataFrames and DataSets effectively, streaming analytics with Spark Streaming, and performing machine learning and deep learning on Spark using MLlib and external tools such as H20 and Deeplearning4j. The book also contains chapters on efficient graph processing, memory management and using Apache Spark on the cloud. By the end of this book, you will have all the necessary information to master Apache Spark, and use it efficiently for Big Data processing and analytics.

Who is this book for?

If you are an intermediate-level Spark developer looking to master the advanced capabilities and use-cases of Apache Spark 2.x, this book is for you. Big Data professionals who wish to know how to integrate and use the features of Apache Spark to build a strong Big Data pipeline will also find this book to be a useful resource. A fundamental knowledge of Apache Spark and the Scala programming language is assumed.

What you will learn

  • • Get to grips with the newly introduced features in Apache Spark 2.x
  • • Perform highly optimised unified batch and real-time data processing using
  • SparkSQL and Structured Streaming
  • • Evaluate large-scale Graph Processing and Analysis using GraphX and GraphFrames
  • • Perform advanced machine learning and deep learning with Spark MLlib, SparkML, SystemML, H2O and DeepLearning4J
  • • Learn how specific parameter settings affect overall performance of an
  • Apache Spark cluster
  • • Apply Apache Spark in Elastic deployments using Jupyter and Zeppelin Notebooks, Docker, Kubernetes and the IBM Cloud

Product Details

Country selected
Publication date, Length, Edition, Language, ISBN-13
Publication date : Jul 26, 2017
Length: 354 pages
Edition : 2nd
Language : English
ISBN-13 : 9781786462749
Vendor :
Apache
Category :
Languages :
Concepts :
:

What do you get with a Packt Subscription?

Free for first 7 days. $19.99 p/m after that. Cancel any time!
Product feature icon Unlimited ad-free access to the largest independent learning library in tech. Access this title and thousands more!
Product feature icon 50+ new titles added per month, including many first-to-market concepts and exclusive early access to books as they are being written.
Product feature icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Product feature icon Thousands of reference materials covering every tech concept you need to stay up to date.
Subscribe now
View plans & pricing

Product Details

Publication date : Jul 26, 2017
Length: 354 pages
Edition : 2nd
Language : English
ISBN-13 : 9781786462749
Vendor :
Apache
Category :
Languages :
Concepts :

Packt Subscriptions

See our plans and pricing
Modal Close icon
€18.99 billed monthly
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Simple pricing, no contract
€189.99 billed annually
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just €5 each
Feature tick icon Exclusive print discounts
€264.99 billed in 18 months
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just €5 each
Feature tick icon Exclusive print discounts

Frequently bought together


Stars icon
Total 137.97
Scala and Spark for Big Data Analytics
€53.99
Mastering Machine Learning with Spark 2.x
€41.99
Mastering Apache Spark 2.x
€41.99
Total 137.97 Stars icon
Banner background image

Table of Contents

14 Chapters
A First Taste and What’s New in Apache Spark V2 Chevron down icon Chevron up icon
Apache Spark SQL Chevron down icon Chevron up icon
The Catalyst Optimizer Chevron down icon Chevron up icon
Project Tungsten Chevron down icon Chevron up icon
Apache Spark Streaming Chevron down icon Chevron up icon
Structured Streaming Chevron down icon Chevron up icon
Apache Spark MLlib Chevron down icon Chevron up icon
Apache SparkML Chevron down icon Chevron up icon
Apache SystemML Chevron down icon Chevron up icon
Deep Learning on Apache Spark with DeepLearning4j and H2O Chevron down icon Chevron up icon
Apache Spark GraphX Chevron down icon Chevron up icon
Apache Spark GraphFrames Chevron down icon Chevron up icon
Apache Spark with Jupyter Notebooks on IBM DataScience Experience Chevron down icon Chevron up icon
Apache Spark on Kubernetes Chevron down icon Chevron up icon

Customer reviews

Rating distribution
Full star icon Full star icon Full star icon Full star icon Half star icon 4.5
(2 Ratings)
5 star 50%
4 star 50%
3 star 0%
2 star 0%
1 star 0%
M.R. Oct 14, 2017
Full star icon Full star icon Full star icon Full star icon Full star icon 5
Romeo Kienzler takes the reader on a big and detailed tour through significant Spark topics and exercises, which occur in the practical usage of Spark in Big Data, Analytics, Data Science and Analytic Data Warehouse ("ADW") projects. In his book topics like the new Spark V2 Ecosystem, Machine Learning, Spark Streaming, Graph Processing, Cluster Design and Management (Yarn and Mesos), Cloud based deployments, Performance topics around HDFS, Date importing and handling, Spark Data Source API, Spark Dataframes and Datasets API, Code Generation for expression evaluation, Project Tungsten, Spark error handling and much more are covered. If you have taken one or more of the well done Spark courses from Databricks before, the topics might familiar but the book covers even some more enhanced topics as well it can be taken as a good comprehension or as in-depth notes. Additionally the book focus on very specific details and problems in parallel programming with Spark, derived from practical use cases.As well the book contains links and references on papers, literature and web forums. To summarize I would recommend this book as an excellent starting point and Spark reference guide.
Amazon Verified review Amazon
Dr. Raj Kamal . Aug 30, 2018
Full star icon Full star icon Full star icon Full star icon Empty star icon 4
Good book to start Spark. Helped me greatly to finish my upcoming book from McGraw-Hill on Big Data Anaytics. My students work and do Big Data data sets analysis using Spark
Amazon Verified review Amazon
Get free access to Packt library with over 7500+ books and video courses for 7 days!
Start Free Trial

FAQs

What is included in a Packt subscription? Chevron down icon Chevron up icon

A subscription provides you with full access to view all Packt and licnesed content online, this includes exclusive access to Early Access titles. Depending on the tier chosen you can also earn credits and discounts to use for owning content

How can I cancel my subscription? Chevron down icon Chevron up icon

To cancel your subscription with us simply go to the account page - found in the top right of the page or at https://subscription.packtpub.com/my-account/subscription - From here you will see the ‘cancel subscription’ button in the grey box with your subscription information in.

What are credits? Chevron down icon Chevron up icon

Credits can be earned from reading 40 section of any title within the payment cycle - a month starting from the day of subscription payment. You also earn a Credit every month if you subscribe to our annual or 18 month plans. Credits can be used to buy books DRM free, the same way that you would pay for a book. Your credits can be found in the subscription homepage - subscription.packtpub.com - clicking on ‘the my’ library dropdown and selecting ‘credits’.

What happens if an Early Access Course is cancelled? Chevron down icon Chevron up icon

Projects are rarely cancelled, but sometimes it's unavoidable. If an Early Access course is cancelled or excessively delayed, you can exchange your purchase for another course. For further details, please contact us here.

Where can I send feedback about an Early Access title? Chevron down icon Chevron up icon

If you have any feedback about the product you're reading, or Early Access in general, then please fill out a contact form here and we'll make sure the feedback gets to the right team. 

Can I download the code files for Early Access titles? Chevron down icon Chevron up icon

We try to ensure that all books in Early Access have code available to use, download, and fork on GitHub. This helps us be more agile in the development of the book, and helps keep the often changing code base of new versions and new technologies as up to date as possible. Unfortunately, however, there will be rare cases when it is not possible for us to have downloadable code samples available until publication.

When we publish the book, the code files will also be available to download from the Packt website.

How accurate is the publication date? Chevron down icon Chevron up icon

The publication date is as accurate as we can be at any point in the project. Unfortunately, delays can happen. Often those delays are out of our control, such as changes to the technology code base or delays in the tech release. We do our best to give you an accurate estimate of the publication date at any given time, and as more chapters are delivered, the more accurate the delivery date will become.

How will I know when new chapters are ready? Chevron down icon Chevron up icon

We'll let you know every time there has been an update to a course that you've bought in Early Access. You'll get an email to let you know there has been a new chapter, or a change to a previous chapter. The new chapters are automatically added to your account, so you can also check back there any time you're ready and download or read them online.

I am a Packt subscriber, do I get Early Access? Chevron down icon Chevron up icon

Yes, all Early Access content is fully available through your subscription. You will need to have a paid for or active trial subscription in order to access all titles.

How is Early Access delivered? Chevron down icon Chevron up icon

Early Access is currently only available as a PDF or through our online reader. As we make changes or add new chapters, the files in your Packt account will be updated so you can download them again or view them online immediately.

How do I buy Early Access content? Chevron down icon Chevron up icon

Early Access is a way of us getting our content to you quicker, but the method of buying the Early Access course is still the same. Just find the course you want to buy, go through the check-out steps, and you’ll get a confirmation email from us with information and a link to the relevant Early Access courses.

What is Early Access? Chevron down icon Chevron up icon

Keeping up to date with the latest technology is difficult; new versions, new frameworks, new techniques. This feature gives you a head-start to our content, as it's being created. With Early Access you'll receive each chapter as it's written, and get regular updates throughout the product's development, as well as the final course as soon as it's ready.We created Early Access as a means of giving you the information you need, as soon as it's available. As we go through the process of developing a course, 99% of it can be ready but we can't publish until that last 1% falls in to place. Early Access helps to unlock the potential of our content early, to help you start your learning when you need it most. You not only get access to every chapter as it's delivered, edited, and updated, but you'll also get the finalized, DRM-free product to download in any format you want when it's published. As a member of Packt, you'll also be eligible for our exclusive offers, including a free course every day, and discounts on new and popular titles.