Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Effective Concurrency in Go

You're reading from   Effective Concurrency in Go Develop, analyze, and troubleshoot high performance concurrent applications with ease

Arrow left icon
Product type Paperback
Published in Apr 2023
Publisher Packt
ISBN-13 9781804619070
Length 212 pages
Edition 1st Edition
Languages
Concepts
Arrow right icon
Author (1):
Arrow left icon
Burak Serdar Burak Serdar
Author Profile Icon Burak Serdar
Burak Serdar
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Chapter 1: Concurrency – A High-Level Overview 2. Chapter 2: Go Concurrency Primitives FREE CHAPTER 3. Chapter 3: The Go Memory Model 4. Chapter 4: Some Well-Known Concurrency Problems 5. Chapter 5: Worker Pools and Pipelines 6. Chapter 6: Error Handling 7. Chapter 7: Timers and Tickers 8. Chapter 8: Handling Requests Concurrently 9. Chapter 9: Atomic Memory Operations 10. Chapter 10: Troubleshooting Concurrency Issues 11. Index 12. Other Books You May Enjoy

Shared memory versus message passing

If you have been developing with Go for some time, you have probably heard the phrase “Do not communicate by sharing memory. Instead, share memory by communicating.” Sharing memory among the concurrent blocks of a program creates vast opportunities for subtle bugs that are hard to diagnose. These problems manifest themselves randomly, usually under load that cannot be simulated in a controlled test environment, and they are hard or impossible to reproduce. What cannot be reproduced cannot be tested, so finding such problems is usually a matter of luck. Once found, they are usually easy to fix with very minor changes. That adds insult to injury. Go supports both shared memory and message-passing models, so we will spend some time looking at what the shared memory and message-passing paradigms are.

In a shared memory system, there can be multiple processors or cores with multiple execution threads that use the same memory. In a Uniform...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image