Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Learn LLVM 12

You're reading from   Learn LLVM 12 A beginner's guide to learning LLVM compiler tools and core libraries with C++

Arrow left icon
Product type Paperback
Published in May 2021
Publisher Packt
ISBN-13 9781839213502
Length 392 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Kai Nacke Kai Nacke
Author Profile Icon Kai Nacke
Kai Nacke
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. Section 1 – The Basics of Compiler Construction with LLVM
2. Chapter 1: Installing LLVM FREE CHAPTER 3. Chapter 2: Touring the LLVM Source 4. Chapter 3: The Structure of a Compiler 5. Section 2 – From Source to Machine Code Generation
6. Chapter 4: Turning the Source File into an Abstract Syntax Tree 7. Chapter 5: Basics of IR Code Generation 8. Chapter 6: IR Generation for High-Level Language Constructs 9. Chapter 7: Advanced IR Generation 10. Chapter 8: Optimizing IR 11. Section 3 –Taking LLVM to the Next Level
12. Chapter 9: Instruction Selection 13. Chapter 10: JIT Compilation 14. Chapter 11: Debugging Using LLVM Tools 15. Chapter 12: Create Your Own Backend 16. Other Books You May Enjoy

Performance profiling with XRay

If your application seems to run slow, then you might want to know where all the time is spent in the code. In this case, instrumenting the code with XRay helps you. Basically, at each function entry and exit, a special call into the runtime library is inserted. This allows counting how often a function is called, and also how much time is spent in the function. You find the implementation for the instrumentation pass in the llvm/lib/XRay/ directory. The runtime portion is part of compiler-rt.

In the following example source, real work is simulated by calling the usleep() function. The func1() function sleeps for 10 µs. The func2() function either calls func1() or sleeps for 100 µs, depending on whether the n parameter is odd or even. Inside the main() function, both functions are called inside a loop. This is already enough to get interesting information. You'll need to save the following source code in the xraydemo.c file:

#include...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image