Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Learning Functional Programming in Go

You're reading from   Learning Functional Programming in Go Change the way you approach your applications using functional programming in Go

Arrow left icon
Product type Paperback
Published in Nov 2017
Publisher Packt
ISBN-13 9781787281394
Length 670 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Lex Sheehan Lex Sheehan
Author Profile Icon Lex Sheehan
Lex Sheehan
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Pure Functional Programming in Go FREE CHAPTER 2. Manipulating Collections 3. Using High-Order Functions 4. SOLID Design in Go 5. Adding Functionality with Decoration 6. Applying FP at the Architectural Level 7. Functional Parameters 8. Increasing Performance Using Pipelining 9. Functors, Monoids, and Generics 10. Monads, Type Classes, and Generics 11. Category Theory That Applies 12. Miscellaneous Information and How-Tos

Functors


Go has three predeclared/raw data types: bool, string, numeric (float, int64, and so on). Other data types in Go require type declarations, that is, they require we use the type keyword. Functions fall in the later category of data types along with array, struct, pointer, interface, slice, map, and channel types. In Go, functions are first-class data types, which means that can be passed around as parameters and returned as values. Functions that can take functions as arguments and return functions are called high-order functions.

We can write function factories--functions that return functions--and even function factory factories. We can also write functions that modify functions or create functions for specific purposes.

Note

Functors: A functor is a collection of X variables that can apply a function, f, over itself to create a collection of Y, that is, f (X) → Y. (To see what we're talking about here, take a quick look at the Fingers times 10 functor example in Chapter 9, Functors...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image