Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Regression Analysis with R

You're reading from   Regression Analysis with R Design and develop statistical nodes to identify unique relationships within data at scale

Arrow left icon
Product type Paperback
Published in Jan 2018
Publisher Packt
ISBN-13 9781788627306
Length 422 pages
Edition 1st Edition
Languages
Concepts
Arrow right icon
Author (1):
Arrow left icon
Giuseppe Ciaburro Giuseppe Ciaburro
Author Profile Icon Giuseppe Ciaburro
Giuseppe Ciaburro
Arrow right icon
View More author details
Toc

Table of Contents (11) Chapters Close

Preface 1. Getting Started with Regression FREE CHAPTER 2. Basic Concepts – Simple Linear Regression 3. More Than Just One Predictor – MLR 4. When the Response Falls into Two Categories – Logistic Regression 5. Data Preparation Using R Tools 6. Avoiding Overfitting Problems - Achieving Generalization 7. Going Further with Regression Models 8. Beyond Linearity – When Curving Is Much Better 9. Regression Analysis in Practice 10. Other Books You May Enjoy

Robust linear regression


So far, we have used the Ordinary Least Squares (OLS) estimates for our linear regression models. But these models only become valid when all regression hypotheses are verified. If this is not the case, least squares regression can be problematic. In such cases we can try to locate the problems through residual diagnostics, but this procedure may be slow and requires a great deal of experience. Often, model-fitting problems are due to the presence of extreme values ​​called outliers. The following figure shows a distribution with outliers:

Outliers have a large influence on the fit, because squaring the residuals magnifies the effects of these extreme data points. Outliers tend to change the direction of the regression line by getting much more weight than they are worth. Thus, the estimate of the regression coefficients is clearly distorted. These effects are difficult to identify since their residuals are much smaller than they would be if the distortion wasn't...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image