Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Tableau 2019.x Cookbook

You're reading from   Tableau 2019.x Cookbook Over 115 recipes to build end-to-end analytical solutions using Tableau

Arrow left icon
Product type Paperback
Published in Jan 2019
Publisher Packt
ISBN-13 9781789533385
Length 670 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (6):
Arrow left icon
Tania Lincoln Tania Lincoln
Author Profile Icon Tania Lincoln
Tania Lincoln
Slaven Bogdanovic Slaven Bogdanovic
Author Profile Icon Slaven Bogdanovic
Slaven Bogdanovic
Teodora Matic Teodora Matic
Author Profile Icon Teodora Matic
Teodora Matic
Rintaro Sugimura Rintaro Sugimura
Author Profile Icon Rintaro Sugimura
Rintaro Sugimura
Dmitry Anoshin Dmitry Anoshin
Author Profile Icon Dmitry Anoshin
Dmitry Anoshin
Dmitrii Shirokov Dmitrii Shirokov
Author Profile Icon Dmitrii Shirokov
Dmitrii Shirokov
+2 more Show less
Arrow right icon
View More author details
Toc

Table of Contents (18) Chapters Close

Preface 1. Getting Started with Tableau Software FREE CHAPTER 2. Data Manipulation 3. Tableau Extracts 4. Tableau Desktop Advanced Calculations 5. Tableau Desktop Advanced Filtering 6. Building Dashboards 7. Telling a Story with Tableau 8. Tableau Visualization 9. Tableau Advanced Visualization 10. Tableau for Big Data 11. Forecasting with Tableau 12. Advanced Analytics with Tableau 13. Deploy Tableau Server 14. Tableau Troubleshooting 15. Preparing Data for Analysis with Tableau Prep 16. ETL Best Practices for Tableau 17. Other Books You May Enjoy

Identifying anomalies in data

When analyzing data we'll frequently encounter unusual cases, outliers, and anomalies. Those cases are different from the majority and they don't match the pattern that the rest of the cases fit in. Sometimes, we might want to identify them in order to remove them from the analysis, because they can skew our results. In other cases, we might be interested in analyzing them. Either way, it's very important to know how to deal with them properly. In Chapter 11, Forecasting with Tableau, the Forecasting on a dataset with outliers recipe taught up how to deal with outliers on one dimension, which is relatively simple. But when we have more than one dimension, things get much more complicated. In this recipe, we'll learn how to deal with multidimensional outliers.

...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image