Streaming Data
This chapter so far has explored data preparation methods for batch-driven ETL. You have learned the steps and techniques to get raw data from a source system, transform it into a historical archive, create an analytics layer, and finally do feature engineering and data splitting. We'll now make a switch to streaming data. Many of the concepts you have learned for batch processing are also relevant for stream processing; however, things (data) move a bit more quickly and timing becomes important.
When preparing streaming event data for analytics, for example, to be used in a model, some specific mechanisms come into play. Essentially, a data stream goes through the same steps as raw batch data: it has to be loaded, modeled, cleaned, and filtered. However, a data stream has no beginning and ending, and time is always important; therefore, the following patterns and practices need to be applied:
- Windows
- Event time
- Watermarks
We&apos...