Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Effective Amazon Machine Learning
Effective Amazon Machine Learning

Effective Amazon Machine Learning: Expert web services for machine learning on cloud

Arrow left icon
Profile Icon Perrier
Arrow right icon
$29.99 $43.99
eBook Apr 2017 306 pages 1st Edition
eBook
$29.99 $43.99
Paperback
$54.99
Subscription
Free Trial
Renews at $19.99p/m
Arrow left icon
Profile Icon Perrier
Arrow right icon
$29.99 $43.99
eBook Apr 2017 306 pages 1st Edition
eBook
$29.99 $43.99
Paperback
$54.99
Subscription
Free Trial
Renews at $19.99p/m
eBook
$29.99 $43.99
Paperback
$54.99
Subscription
Free Trial
Renews at $19.99p/m

What do you get with eBook?

Product feature icon Instant access to your Digital eBook purchase
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
OR
Modal Close icon
Payment Processing...
tick Completed

Billing Address

Table of content icon View table of contents Preview book icon Preview Book

Effective Amazon Machine Learning

Machine Learning Definitions and Concepts

This chapter offers a high-level definition and explanation of the machine learning concepts needed to use the Amazon Machine Learning (Amazon ML) service and fully understand how it works. The chapter has three specific goals:

  • Listing the main techniques to improve the quality of predictions used when dealing with raw data. You will learn how to deal with the most common types of data problems. Some of these techniques are available in Amazon ML, while others aren't.
  • Presenting the predictive analytics workflow and introducing the concept of cross validation or how to split your data to train and test your models.
  • Showing how to detect poor performance of your model and presenting strategies to improve these performances.

The reader will learn the following:

  • How to spot common problems and anomalies within a given dataset
  • How to extract the most information out...

What's an algorithm? What's a model?

Before we dive into data munging, let's take a moment to explain the difference between an algorithm and a model, two terms we've been using up until now without a formal definition.

Consider the simple linear regression example we saw in Chapter 1, Introduction to Machine Learning and Predictive Analytics — the linear regression equation with one predictor:

Here, x is the variable, ŷ the prediction, not the real value, and (a,b) the parameters of the linear regression model:

  • The conceptual or theoretical model is the representation of the data that is the most adapted to the actual dataset. It is chosen at the beginning by the data scientist. In this case, the conceptual model is the linear regression model, where the prediction is a linear combination of a variable. Other conceptual models include decision trees, naive bayes, neural networks...

Dealing with messy data

As the dataset grows, so do inconsistencies and errors. Whether as a result of human error, system failure, or data structure evolutions, real-world data is rife with invalid, absurd, or missing values. Even when the dataset is spotless, the nature of some variables need to be adapted to the model. We look at the most common data anomalies and characteristics that need to be corrected in the context of Amazon ML linear models.

Classic datasets versus real-world datasets

Data scientists and machine-learning practitioners often use classic datasets to demonstrate the behavior of certain models. The Iris dataset, composed of 150 samples of three types of iris flowers, is one of the most commonly used to demonstrate or to teach...

The predictive analytics workflow

We have been talking about training the model. What does that mean in practice?

In supervised learning, the dataset is usually split into three non-equal parts: training, validation, and test:

  • The training set on which you train your model. It has to be big enough to give the model as much information on the data as possible. This subset of the data is used by the algorithm to estimate the best parameters of the model. In our case, the SGD algorithm will use that training subset to find the optimal weights of the linear regression model.
  • The validation set is used to assess the performance of a trained model. By measuring the performance of the trained model on a subset that has not been used in its training, we have an objective assessment of its performance. That way we can train different models with different meta parameters and see which one is performing the...

Identifying and correcting poor performances

A performant predictive model is one that produces reliable and satisfying predictions on new data. There are two situations where the model will fail to consistently produce good predictions, and both depend on how the model is trained. A poorly trained model will result in underfitting, while an overly trained model will result in overfitting.

Underfitting

Underfitting means that the model was poorly trained. Either the training dataset did not have enough information to infer strong predictions, or the algorithm that trained the model on the training dataset was not adequate for the context. The algorithm was not well parameterized or simply inadequate for the data.

If we measure the prediction error...

What's an algorithm? What's a model?


Before we dive into data munging, let's take a moment to explain the difference between an algorithm and a model, two terms we've been using up until now without a formal definition.

Consider the simple linear regression example we saw in Chapter 1, Introduction to Machine Learning and Predictive Analytics — the linear regression equation with one predictor:

Here, x is the variable, ŷ the prediction, not the real value, and (a,b) the parameters of the linear regression model:

  • The conceptual or theoretical model is the representation of the data that is the most adapted to the actual dataset. It is chosen at the beginning by the data scientist. In this case, the conceptual model is the linear regression model, where the prediction is a linear combination of a variable. Other conceptual models include decision trees, naive bayes, neural networks, and so on. All these models have parameters that need to be tuned to the actual data.
  • The algorithm is the computational...

Dealing with messy data


As the dataset grows, so do inconsistencies and errors. Whether as a result of human error, system failure, or data structure evolutions, real-world data is rife with invalid, absurd, or missing values. Even when the dataset is spotless, the nature of some variables need to be adapted to the model. We look at the most common data anomalies and characteristics that need to be corrected in the context of Amazon ML linear models.

Classic datasets versus real-world datasets

Data scientists and machine-learning practitioners often use classic datasets to demonstrate the behavior of certain models. The Iris dataset, composed of 150 samples of three types of iris flowers, is one of the most commonly used to demonstrate or to teach predictive analytics. It has been around since 1936!

The Boston housing dataset and the Titanic dataset are other very popular datasets for predictive analytics. For text classification, the Reuters or the 20 newsgroups text datasets are very common...

Left arrow icon Right arrow icon
Download code icon Download Code

Key benefits

  • Create great machine learning models that combine the power of algorithms with interactive tools without worrying about the underlying complexity
  • Learn the What’s next? of machine learning—machine learning on the cloud—with this unique guide
  • Create web services that allow you to perform affordable and fast machine learning on the cloud

Description

Predictive analytics is a complex domain requiring coding skills, an understanding of the mathematical concepts underpinning machine learning algorithms, and the ability to create compelling data visualizations. Following AWS simplifying Machine learning, this book will help you bring predictive analytics projects to fruition in three easy steps: data preparation, model tuning, and model selection. This book will introduce you to the Amazon Machine Learning platform and will implement core data science concepts such as classification, regression, regularization, overfitting, model selection, and evaluation. Furthermore, you will learn to leverage the Amazon Web Service (AWS) ecosystem for extended access to data sources, implement realtime predictions, and run Amazon Machine Learning projects via the command line and the Python SDK. Towards the end of the book, you will also learn how to apply these services to other problems, such as text mining, and to more complex datasets.

Who is this book for?

This book is intended for data scientists and managers of predictive analytics projects; it will teach beginner- to advanced-level machine learning practitioners how to leverage Amazon Machine Learning and complement their existing Data Science toolbox. No substantive prior knowledge of Machine Learning, Data Science, statistics, or coding is required.

What you will learn

  • Learn how to use the Amazon Machine Learning service from scratch for predictive analytics
  • Gain hands-on experience of key Data Science concepts
  • Solve classic regression and classification problems
  • Run projects programmatically via the command line and the Python SDK
  • Leverage the Amazon Web Service ecosystem to access extended data sources
  • Implement streaming and advanced projects

Product Details

Country selected
Publication date, Length, Edition, Language, ISBN-13
Publication date : Apr 25, 2017
Length: 306 pages
Edition : 1st
Language : English
ISBN-13 : 9781785881794
Vendor :
Amazon
Category :
Languages :
Tools :

What do you get with eBook?

Product feature icon Instant access to your Digital eBook purchase
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
OR
Modal Close icon
Payment Processing...
tick Completed

Billing Address

Product Details

Publication date : Apr 25, 2017
Length: 306 pages
Edition : 1st
Language : English
ISBN-13 : 9781785881794
Vendor :
Amazon
Category :
Languages :
Tools :

Packt Subscriptions

See our plans and pricing
Modal Close icon
$19.99 billed monthly
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Simple pricing, no contract
$199.99 billed annually
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just $5 each
Feature tick icon Exclusive print discounts
$279.99 billed in 18 months
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just $5 each
Feature tick icon Exclusive print discounts

Frequently bought together


Stars icon
Total $ 153.97
Effective Amazon Machine Learning
$54.99
Machine Learning with TensorFlow 1.x
$43.99
Artificial Intelligence with Python
$54.99
Total $ 153.97 Stars icon
Banner background image

Table of Contents

9 Chapters
Introduction to Machine Learning and Predictive Analytics Chevron down icon Chevron up icon
Machine Learning Definitions and Concepts Chevron down icon Chevron up icon
Overview of an Amazon Machine Learning Workflow Chevron down icon Chevron up icon
Loading and Preparing the Dataset Chevron down icon Chevron up icon
Model Creation Chevron down icon Chevron up icon
Predictions and Performances Chevron down icon Chevron up icon
Command Line and SDK Chevron down icon Chevron up icon
Creating Datasources from Redshift Chevron down icon Chevron up icon
Building a Streaming Data Analysis Pipeline Chevron down icon Chevron up icon
Get free access to Packt library with over 7500+ books and video courses for 7 days!
Start Free Trial

FAQs

How do I buy and download an eBook? Chevron down icon Chevron up icon

Where there is an eBook version of a title available, you can buy it from the book details for that title. Add either the standalone eBook or the eBook and print book bundle to your shopping cart. Your eBook will show in your cart as a product on its own. After completing checkout and payment in the normal way, you will receive your receipt on the screen containing a link to a personalised PDF download file. This link will remain active for 30 days. You can download backup copies of the file by logging in to your account at any time.

If you already have Adobe reader installed, then clicking on the link will download and open the PDF file directly. If you don't, then save the PDF file on your machine and download the Reader to view it.

Please Note: Packt eBooks are non-returnable and non-refundable.

Packt eBook and Licensing When you buy an eBook from Packt Publishing, completing your purchase means you accept the terms of our licence agreement. Please read the full text of the agreement. In it we have tried to balance the need for the ebook to be usable for you the reader with our needs to protect the rights of us as Publishers and of our authors. In summary, the agreement says:

  • You may make copies of your eBook for your own use onto any machine
  • You may not pass copies of the eBook on to anyone else
How can I make a purchase on your website? Chevron down icon Chevron up icon

If you want to purchase a video course, eBook or Bundle (Print+eBook) please follow below steps:

  1. Register on our website using your email address and the password.
  2. Search for the title by name or ISBN using the search option.
  3. Select the title you want to purchase.
  4. Choose the format you wish to purchase the title in; if you order the Print Book, you get a free eBook copy of the same title. 
  5. Proceed with the checkout process (payment to be made using Credit Card, Debit Cart, or PayPal)
Where can I access support around an eBook? Chevron down icon Chevron up icon
  • If you experience a problem with using or installing Adobe Reader, the contact Adobe directly.
  • To view the errata for the book, see www.packtpub.com/support and view the pages for the title you have.
  • To view your account details or to download a new copy of the book go to www.packtpub.com/account
  • To contact us directly if a problem is not resolved, use www.packtpub.com/contact-us
What eBook formats do Packt support? Chevron down icon Chevron up icon

Our eBooks are currently available in a variety of formats such as PDF and ePubs. In the future, this may well change with trends and development in technology, but please note that our PDFs are not Adobe eBook Reader format, which has greater restrictions on security.

You will need to use Adobe Reader v9 or later in order to read Packt's PDF eBooks.

What are the benefits of eBooks? Chevron down icon Chevron up icon
  • You can get the information you need immediately
  • You can easily take them with you on a laptop
  • You can download them an unlimited number of times
  • You can print them out
  • They are copy-paste enabled
  • They are searchable
  • There is no password protection
  • They are lower price than print
  • They save resources and space
What is an eBook? Chevron down icon Chevron up icon

Packt eBooks are a complete electronic version of the print edition, available in PDF and ePub formats. Every piece of content down to the page numbering is the same. Because we save the costs of printing and shipping the book to you, we are able to offer eBooks at a lower cost than print editions.

When you have purchased an eBook, simply login to your account and click on the link in Your Download Area. We recommend you saving the file to your hard drive before opening it.

For optimal viewing of our eBooks, we recommend you download and install the free Adobe Reader version 9.