Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Embedded Systems Architecture

You're reading from   Embedded Systems Architecture Design and write software for embedded devices to build safe and connected systems

Arrow left icon
Product type Paperback
Published in Jan 2023
Publisher Packt
ISBN-13 9781803239545
Length 342 pages
Edition 2nd Edition
Languages
Concepts
Arrow right icon
Author (1):
Arrow left icon
Daniele Lacamera Daniele Lacamera
Author Profile Icon Daniele Lacamera
Daniele Lacamera
Arrow right icon
View More author details
Toc

Table of Contents (18) Chapters Close

Preface 1. Part 1 – Introduction to Embedded Systems Development
2. Chapter 1: Embedded Systems – A Pragmatic Approach FREE CHAPTER 3. Chapter 2: Work Environment and Workflow Optimization 4. Part 2 – Core System Architecture
5. Chapter 3: Architectural Patterns 6. Chapter 4: The Boot-Up Procedure 7. Chapter 5: Memory Management 8. Part 3 – Device Drivers and Communication Interfaces
9. Chapter 6: General-Purpose Peripherals 10. Chapter 7: Local Bus Interfaces 11. Chapter 8: Power Management and Energy Saving 12. Chapter 9: Distributed Systems and IoT Architecture 13. Part 4 – Multithreading
14. Chapter 10: Parallel Tasks and Scheduling 15. Chapter 11: Trusted Execution Environment 16. Index 17. Other Books You May Enjoy

Designing low-power embedded applications

In this section, a few design patterns are proposed to achieve a better energy profile on the target device, by evaluating the power demand of all the components and the states of the system we are about to design. Once we know how to measure the values in the target, and the details about the low-power mode in the selected architecture and microprocessor family, the application can be programmed, keeping other parameters in mind, such as the energy efficiency of the software we are writing.

Replacing busy loops with sleep mode

The reason busy loops are very popular among hobbyists is that they are so easy to implement. Suppose that the system needs to wait for a digital input to switch to a low-logic state, and this input is mapped to a certain GPIO. This can be easily done with the following one line of code:

while((GPIOX_IDR & (1 << INPUT_PINX)) != 0)
  ;

While this is perfectly working as expected, it will...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image