Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Managing Kubernetes Resources Using Helm

You're reading from   Managing Kubernetes Resources Using Helm Simplifying how to build, package, and distribute applications for Kubernetes

Arrow left icon
Product type Paperback
Published in Sep 2022
Publisher Packt
ISBN-13 9781803242897
Length 310 pages
Edition 2nd Edition
Tools
Arrow right icon
Authors (2):
Arrow left icon
Andrew Block Andrew Block
Author Profile Icon Andrew Block
Andrew Block
Austin Dewey Austin Dewey
Author Profile Icon Austin Dewey
Austin Dewey
Arrow right icon
View More author details
Toc

Table of Contents (18) Chapters Close

Preface 1. Part 1: Introduction and Setup FREE CHAPTER
2. Chapter 1: Understanding Kubernetes and Helm 3. Chapter 2: Preparing a Kubernetes and Helm Environment 4. Chapter 3: Installing Your First App with Helm 5. Part 2: Helm Chart Development
6. Chapter 4: Scaffolding a New Helm Chart 7. Chapter 5: Helm Dependency Management 8. Chapter 6: Understanding Helm Templates 9. Chapter 7: Helm Lifecycle Hooks 10. Chapter 8: Publishing to a Helm Chart Repository 11. Chapter 9: Testing Helm Charts 12. Part 3: Advanced Deployment Patterns
13. Chapter 10: Automating Helm with CD and GitOps 14. Chapter 11: Using Helm with the Operator Framework 15. Chapter 12: Helm Security Considerations 16. Index 17. Other Books You May Enjoy

The basics of a Helm hook

A hook executes as a one-time action at a designated point in time during the life span of a release. A hook is implemented as a Kubernetes resource and, more specifically, within a container. While the majority of workloads within Kubernetes are designed to be long-living processes, such as an application serving API requests, hooks are made up of a single task or set of tasks that return 0 to indicate success or non-0 to indicate a failure.

The options that are typically used in a Kubernetes environment for creating short-lived tasks are a bare pod or a job. A bare pod is a pod that runs until completion and then terminates but will not be rescheduled if the underlying node fails. A bare pod differentiates from a standard pod by toggling the restartPolicy property. By default, this field is configured as Always, meaning that the pod will be restarted if it completes (either due to success or failure). Even though there are use cases for running bare pods...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image