To get the most out of this book
- The reader must possess a basic knowledge of the most common machine learning algorithms, with a clear understanding of their mathematical structure and applications.
- As Python is the language chosen for the example, the reader must be familiar with this language and, in particular, frameworks like scikit-learn, TensorFlow 2, pandas, and PyStan.
- Considering the complexity of some topics, a good knowledge of calculus, probability theory, linear algebra, and statistics is strongly advised.
Download the example code files
You can download the example code files for this book from your account at http://www.packt.com. If you purchased this book elsewhere, you can visit http://www.packtpub.com/support and register to have the files emailed directly to you.
You can download the code files by following these steps:
- Log in or register at http://www.packt.com.
- Select the Support tab.
- Click on Code Download.
- Enter the name of the book in the Search box and follow the on-screen instructions.
Once the file is downloaded, please make sure that you unzip or extract the folder using the latest version of:
- WinRAR / 7-Zip for Windows
- Zipeg / iZip / UnRarX for Mac
- 7-Zip / PeaZip for Linux
The code bundle for the book is also hosted on GitHub at https://github.com/PacktPublishing/Mastering-Machine-Learning-Algorithms-Second-Edition. We also have other code bundles from our rich catalog of books and videos available at https://github.com/PacktPublishing/. Check them out!
Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this book. You can download it here: https://static.packt-cdn.com/downloads/9781838820299_ColorImages.pdf.
Conventions used
There are a number of text conventions used throughout this book.
CodeInText
: Indicates code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. For example, "Mount the downloaded WebStorm-10*.dmg
disk image file as another disk in your system."
A block of code is set as follows:
ax[0].set_title('L1 regularization', fontsize=18)
ax[0].set_xlabel('Parameter', fontsize=18)
ax[0].set_ylabel(r'$|\theta_i|$', fontsize=18)
When we wish to draw your attention to a particular part of a code block, the relevant lines or items are set in bold:
ax[0].set_title('L1 regularization', fontsize=18)
ax[0].set_xlabel('Parameter', fontsize=18)
ax[0].set_ylabel(r'$|\theta_i|$', fontsize=18)
Any command-line input or output is written as follows:
pip install -U scikit-fuzzy
Bold: Indicates a new term, an important word, or words that you see on the screen, for example, in menus or dialog boxes, also appear in the text like this. For example: "Select System info from the Administration panel."
Warnings or important notes appear like this.
Tips and tricks appear like this.