Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Python Data Analysis

You're reading from   Python Data Analysis Learn how to apply powerful data analysis techniques with popular open source Python modules

Arrow left icon
Product type Paperback
Published in Oct 2014
Publisher
ISBN-13 9781783553358
Length 348 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Ivan Idris Ivan Idris
Author Profile Icon Ivan Idris
Ivan Idris
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. Getting Started with Python Libraries 2. NumPy Arrays FREE CHAPTER 3. Statistics and Linear Algebra 4. pandas Primer 5. Retrieving, Processing, and Storing Data 6. Data Visualization 7. Signal Processing and Time Series 8. Working with Databases 9. Analyzing Textual Data and Social Media 10. Predictive Analytics and Machine Learning 11. Environments Outside the Python Ecosystem and Cloud Computing 12. Performance Tuning, Profiling, and Concurrency A. Key Concepts
B. Useful Functions C. Online Resources
Index

NumPy and SciPy modules


First, let's take a look at the NumPy and SciPy module documentation. What will be described here is not a topic specific to data analysis, but more of a general Python item.

The following code prints the descriptions of subpackages for NumPy and SciPy:

import pkgutil as pu
import numpy as np
import matplotlib as mpl
import scipy as sp
import pydoc


print "NumPy version", np.__version__
print "SciPy version", sp.__version__
print "Matplotlib version", mpl.__version__

def clean(astr):
   s = astr
   # remove multiple spaces
   s = ' '.join(s.split())
   s = s.replace('=','')

   return s

def print_desc(prefix, pkg_path):
   for pkg in pu.iter_modules(path=pkg_path):
      name = prefix + "." + pkg[1]

      if pkg[2] == True:
         try:
            docstr = pydoc.plain(pydoc.render_doc(name))
            docstr = clean(docstr)
            start = docstr.find("DESCRIPTION")
            docstr = docstr[start: start + 140]
            print name, docstr
         except...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image