Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Quantum Computing Experimentation with Amazon Braket

You're reading from   Quantum Computing Experimentation with Amazon Braket Explore Amazon Braket quantum computing to solve combinatorial optimization problems

Arrow left icon
Product type Paperback
Published in Jul 2022
Publisher Packt
ISBN-13 9781800565265
Length 420 pages
Edition 1st Edition
Arrow right icon
Author (1):
Arrow left icon
Alex Khan Alex Khan
Author Profile Icon Alex Khan
Alex Khan
Arrow right icon
View More author details
Toc

Table of Contents (19) Chapters Close

Preface 1. Introduction
2. Section 1: Getting Started with Amazon Braket FREE CHAPTER
3. Chapter 1: Setting Up Amazon Braket 4. Chapter 2: Braket Devices Explained 5. Chapter 3: User Setup, Tasks, and Understanding Device Costs 6. Chapter 4: Writing Your First Amazon Braket Code Sample 7. Section 2: Building Blocks for Real-World Use Cases
8. Chapter 5: Using a Quantum Annealer – Developing a QUBO Function and Applying Constraints 9. Chapter 6: Using Gate-Based Quantum Computers – Qubits and Quantum Circuits 10. Chapter 7: Using Gate Quantum Computers – Basic Quantum Algorithms 11. Chapter 8: Using Hybrid Algorithms – Optimization Using Gate-Based Quantum Computers 12. Chapter 9: Running QAOA on Simulators and Amazon Braket Devices 13. Section 3: Real-World Use Cases
14. Chapter 10: Amazon Braket Hybrid Jobs, PennyLane, and other Braket Features 15. Chapter 11: Single-Objective Optimization Use Case 16. Chapter 12: Multi-Objective Optimization Use Case 17. Other Books You May Enjoy Appendix: Knapsack BQM Derivation

Representing a binary quadratic function using 
a phase adder

In Chapter 5, Using a Quantum Annealer – Developing a QUBO Function and Applying Constraints, we showed how D-Wave solves QUBO problems. If the problem is set up as a matrix, then we can use the diagonal terms as the linear values and the non-diagonal terms as the quadratic terms in a BQM, where the independent variables have only binary values, {0, 1}. The optimized solution is then found using D-Wave and other QUBO solvers, which produce a binary string with the lowest energy.

A binary quadratic model can be represented by the following equation:

As mentioned previously, xi and xj are binary variables, while ci,j is a floating-point coefficient. By saying i<j, we are stating that we are working with an upper-triangular matrix. Note that for simplicity, since x is binary, we can treat x2 as x. We will refer to c00 or c11 as just c0 and c1.

Let’s say we had the matrix...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image