Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Scalable Data Streaming with Amazon Kinesis

You're reading from   Scalable Data Streaming with Amazon Kinesis Design and secure highly available, cost-effective data streaming applications with Amazon Kinesis

Arrow left icon
Product type Paperback
Published in Mar 2021
Publisher Packt
ISBN-13 9781800565401
Length 314 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (4):
Arrow left icon
Rajeev Chakrabarti Rajeev Chakrabarti
Author Profile Icon Rajeev Chakrabarti
Rajeev Chakrabarti
Tarik Makota Tarik Makota
Author Profile Icon Tarik Makota
Tarik Makota
Brian Maguire Brian Maguire
Author Profile Icon Brian Maguire
Brian Maguire
Danny Gagne Danny Gagne
Author Profile Icon Danny Gagne
Danny Gagne
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Section 1: Introduction to Data Streaming and Amazon Kinesis
2. Chapter 1: What Are Data Streams? FREE CHAPTER 3. Chapter 2: Messaging and Data Streaming in AWS 4. Chapter 3: The SmartCity Bike-Sharing Service 5. Section 2: Deep Dive into Kinesis
6. Chapter 4: Kinesis Data Streams 7. Chapter 5: Kinesis Firehose 8. Chapter 6: Kinesis Data Analytics 9. Chapter 7: Amazon Kinesis Video Streams 10. Section 3: Integrations
11. Chapter 8: Kinesis Integrations 12. Other Books You May Enjoy

Understanding data format conversion in KDF

KDF allows the conversion of incoming data from JSON to either Apache Parquet (Parquet) or Apache ORC (ORC) format. Parquet and ORC are popular columnar formats as opposed to JSON or Comma Separated Values (CSV), which are row formats. Columnar formats provide several advantages for storage and faster querying compared to row formats, especially in big-data use cases. In row formats, data for all columns in a row is stored together, which means that when querying a subset of columns, the data for all columns needs to be read and the unneeded columns filtered out. In columnar formats, data is stored by columns. This provides the ability to only retrieve data for the columns specified. This results in less data scanned for returning query results, and more sequential reads, resulting in better performance. In addition, since data in a column tends to be similar, columnar formats allow for better compression as well. This results in space saving...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image