Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
The Deep Learning Architect's Handbook

You're reading from   The Deep Learning Architect's Handbook Build and deploy production-ready DL solutions leveraging the latest Python techniques

Arrow left icon
Product type Paperback
Published in Dec 2023
Publisher Packt
ISBN-13 9781803243795
Length 516 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Ee Kin Chin Ee Kin Chin
Author Profile Icon Ee Kin Chin
Ee Kin Chin
Arrow right icon
View More author details
Toc

Table of Contents (25) Chapters Close

Preface 1. Part 1 – Foundational Methods
2. Chapter 1: Deep Learning Life Cycle FREE CHAPTER 3. Chapter 2: Designing Deep Learning Architectures 4. Chapter 3: Understanding Convolutional Neural Networks 5. Chapter 4: Understanding Recurrent Neural Networks 6. Chapter 5: Understanding Autoencoders 7. Chapter 6: Understanding Neural Network Transformers 8. Chapter 7: Deep Neural Architecture Search 9. Chapter 8: Exploring Supervised Deep Learning 10. Chapter 9: Exploring Unsupervised Deep Learning 11. Part 2 – Multimodal Model Insights
12. Chapter 10: Exploring Model Evaluation Methods 13. Chapter 11: Explaining Neural Network Predictions 14. Chapter 12: Interpreting Neural Networks 15. Chapter 13: Exploring Bias and Fairness 16. Chapter 14: Analyzing Adversarial Performance 17. Part 3 – DLOps
18. Chapter 15: Deploying Deep Learning Models to Production 19. Chapter 16: Governing Deep Learning Models 20. Chapter 17: Managing Drift Effectively in a Dynamic Environment 21. Chapter 18: Exploring the DataRobot AI Platform 22. Chapter 19: Architecting LLM Solutions 23. Index 24. Other Books You May Enjoy

Delivering model insights

Model metric performance, when used exclusively for model comparisons and the model choosing process, is often not the most effective way to reliably obtain the true best model. When people care about the decisions that can potentially be made by the machine learning model, they typically require more information and insights to eventually put their trust in the ability of the model to make decisions. Ultimately, when models are not trusted, they don’t get deployed. However, trust doesn’t just depend on insights of the model. Building trust in a model involves ensuring accurate, reliable, and unbiased predictions that align with domain expertise and business objectives, while providing stakeholders with insights into the model’s performance metrics, decision-making logic, and rationale behind its predictions. Addressing potential biases and demonstrating fairness are crucial for gaining confidence in the model’s dependability. This ongoing trust-building process extends beyond initial deployment, as the model must consistently exhibit sound decision-making, justify predictions, and maintain unbiased performance. By fostering trust, the model becomes a valuable and reliable tool for real-world applications, leading to increased adoption and utilization across various domains and industries.

Deliver model insights that matter to the business. Other than delivering model insights with the obvious goal of ensuring model trust and eliminating trust issues, actual performance metrics are equally important. Make sure you translate model metrics into layman’s business metrics whenever possible to effectively communicate the potential positive impact that the model can bring to the business. Success metrics, which are defined earlier in the planning phase, should be reported with actual values at this stage.

The process of inducing trust in a model doesn’t stop after the model gets deployed. Similar to how humans are required to explain their decisions in life, machine learning models (if expected to replace humans to automate the decisioning process) are also required to do so. This process is called prediction explanations. In some cases, model decisions are expected to be used as a reference where there is a human in the loop that acts as a domain expert to verify decisions before the decisions are carried out. Prediction explanations are almost always a necessity in these conditions where the users of the model are interested in why the model made its predictions instead of using the predictions directly.

Model insights also allow you to improve a model’s performance. Remember that the machine learning life cycle is naturally an iterative process. Some concrete examples of where this condition could happen are as follows:

  • You realize that the model is biased against a particular group and either go back to the data acquisition stage to acquire more data from the less represented group or change to a modeling technique that is robust to bias
  • You realize that the model performs badly in one class and go back to the model development stage to use a different deep learning model loss function that can focus on the badly performing class

Deep learning models are known to be a black box model. However, in reality, today, there have been many published research papers on deep learning explanation methods that have allowed deep learning to break the boundaries of a black box. We will dive into the different ways we can interpret and provide insights for deep learning models in Part 2 of this book.

Now that we have more context of the processes involved in the deep learning life cycle, in the next section, we will discuss risks that can exist throughout the life cycle of the project that you need to worry about.

You have been reading a chapter from
The Deep Learning Architect's Handbook
Published in: Dec 2023
Publisher: Packt
ISBN-13: 9781803243795
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image