Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Big Data Analytics

You're reading from   Big Data Analytics Real time analytics using Apache Spark and Hadoop

Arrow left icon
Product type Paperback
Published in Sep 2016
Publisher Packt
ISBN-13 9781785884696
Length 326 pages
Edition 1st Edition
Tools
Concepts
Arrow right icon
Author (1):
Arrow left icon
Venkat Ankam Venkat Ankam
Author Profile Icon Venkat Ankam
Venkat Ankam
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. Big Data Analytics at a 10,000-Foot View FREE CHAPTER 2. Getting Started with Apache Hadoop and Apache Spark 3. Deep Dive into Apache Spark 4. Big Data Analytics with Spark SQL, DataFrames, and Datasets 5. Real-Time Analytics with Spark Streaming and Structured Streaming 6. Notebooks and Dataflows with Spark and Hadoop 7. Machine Learning with Spark and Hadoop 8. Building Recommendation Systems with Spark and Mahout 9. Graph Analytics with GraphX 10. Interactive Analytics with SparkR Index

Advanced concepts of Spark Streaming


Let's go through some of the important advanced concepts of Spark Streaming.

Using DataFrames

We learned Spark SQL and DataFrames in Chapter 4, Big Data Analytics with Spark SQL, DataFrames, and Datasets. There are many use cases where you want to convert DStream and DataFrame to do interactive analytics. RDDs generated by DStreams can be converted to DataFrames and queried with SQL internally within the program or from external SQL clients as well. Refer to the sql_network_wordcount.py program in /usr/lib/spark/examples/lib/streaming for implementing SQL in a Spark Streaming application. You can also start JDBC server within the application with the following code:

HiveThriftServer2.startWithContext(hiveContext)

Temporary tables can now be accessed from any SQL client such as beeline to query the data.

MLlib operations

It is easy to implement machine learning algorithms in Spark Streaming applications. The following Scala code trains a KMeans clustering model...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image