Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Data Science for Marketing Analytics

You're reading from   Data Science for Marketing Analytics A practical guide to forming a killer marketing strategy through data analysis with Python

Arrow left icon
Product type Paperback
Published in Sep 2021
Publisher Packt
ISBN-13 9781800560475
Length 636 pages
Edition 2nd Edition
Languages
Tools
Arrow right icon
Authors (3):
Arrow left icon
Vishwesh Ravi Shrimali Vishwesh Ravi Shrimali
Author Profile Icon Vishwesh Ravi Shrimali
Vishwesh Ravi Shrimali
Mirza Rahim Baig Mirza Rahim Baig
Author Profile Icon Mirza Rahim Baig
Mirza Rahim Baig
Gururajan Govindan Gururajan Govindan
Author Profile Icon Gururajan Govindan
Gururajan Govindan
Arrow right icon
View More author details
Toc

Table of Contents (11) Chapters Close

Preface
1. Data Preparation and Cleaning 2. Data Exploration and Visualization FREE CHAPTER 3. Unsupervised Learning and Customer Segmentation 4. Evaluating and Choosing the Best Segmentation Approach 5. Predicting Customer Revenue Using Linear Regression 6. More Tools and Techniques for Evaluating Regression Models 7. Supervised Learning: Predicting Customer Churn 8. Fine-Tuning Classification Algorithms 9. Multiclass Classification Algorithms Appendix

Summary

Machine learning-based clustering techniques are great in that they help speed up the segmentation process and can find patterns in data that can escape highly proficient analysts. Multiple techniques for clustering have been developed over the decades, each having its merits and drawbacks. As a data science practitioner in marketing, understanding different techniques will make you far more effective in your practice. However, faced with multiple options in techniques and hyper-parameters, it's important to be able to compare the results from the techniques objectively. This, in turn, requires you to quantify the quality of clusters resulting from a clustering process.

In this chapter, you learned various methods for choosing the number of clusters, including judgment-based methods such as visual inspection of cluster overlap and elbow determination using the sum of squared errors/ inertia, and objective methods such as evaluating the silhouette score. Each of these...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image