Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Data Wrangling with Python

You're reading from   Data Wrangling with Python Creating actionable data from raw sources

Arrow left icon
Product type Paperback
Published in Feb 2019
Publisher Packt
ISBN-13 9781789800111
Length 452 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Shubhadeep Roychowdhury Shubhadeep Roychowdhury
Author Profile Icon Shubhadeep Roychowdhury
Shubhadeep Roychowdhury
Dr. Tirthajyoti Sarkar Dr. Tirthajyoti Sarkar
Author Profile Icon Dr. Tirthajyoti Sarkar
Dr. Tirthajyoti Sarkar
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Data Wrangling with Python
Preface
1. Introduction to Data Wrangling with Python 2. Advanced Data Structures and File Handling FREE CHAPTER 3. Introduction to NumPy, Pandas, and Matplotlib 4. A Deep Dive into Data Wrangling with Python 5. Getting Comfortable with Different Kinds of Data Sources 6. Learning the Hidden Secrets of Data Wrangling 7. Advanced Web Scraping and Data Gathering 8. RDBMS and SQL 9. Application of Data Wrangling in Real Life Appendix

Concatenating, Merging, and Joining


Merging and joining tables or datasets are highly common operations in the day-to-day job of a data wrangling professional. These operations are akin to the JOIN query in SQL for relational database tables. Often, the key data is present in multiple tables, and those records need to be brought into one combined table that's matching on that common key. This is an extremely common operation in any type of sales or transactional data, and therefore must be mastered by a data wrangler. The pandas library offers nice and intuitive built-in methods to perform various types of JOIN queries involving multiple DataFrame objects.

Exercise 54: Concatenation

We will start by learning the concatenation of DataFrames along various axes (rows or columns). This is a very useful operation as it allows you to grow a DataFrame as the new data comes in or new feature columns need to be inserted in the table:

  1. Sample 4 records each to create three DataFrames at random from the...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image