Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Deep Learning for Beginners

You're reading from   Deep Learning for Beginners A beginner's guide to getting up and running with deep learning from scratch using Python

Arrow left icon
Product type Paperback
Published in Sep 2020
Publisher Packt
ISBN-13 9781838640859
Length 432 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Pablo Rivas Pablo Rivas
Author Profile Icon Pablo Rivas
Pablo Rivas
Dr. Pablo Rivas Dr. Pablo Rivas
Author Profile Icon Dr. Pablo Rivas
Dr. Pablo Rivas
Arrow right icon
View More author details
Toc

Table of Contents (20) Chapters Close

Preface 1. Section 1: Getting Up to Speed
2. Introduction to Machine Learning FREE CHAPTER 3. Setup and Introduction to Deep Learning Frameworks 4. Preparing Data 5. Learning from Data 6. Training a Single Neuron 7. Training Multiple Layers of Neurons 8. Section 2: Unsupervised Deep Learning
9. Autoencoders 10. Deep Autoencoders 11. Variational Autoencoders 12. Restricted Boltzmann Machines 13. Section 3: Supervised Deep Learning
14. Deep and Wide Neural Networks 15. Convolutional Neural Networks 16. Recurrent Neural Networks 17. Generative Adversarial Networks 18. Final Remarks on the Future of Deep Learning 19. Other Books You May Enjoy

Summary

This advanced chapter showed you how to create RNNs. You learned about LSTMs and its bi-directional implementation, which is one of the most powerful approaches for sequences that can have distant temporal correlations. You also learned to create an LSTM-based sentiment analysis model for the classification of movie reviews. You designed an autoencoder to learn a latent space for MNIST using simple and bi-directional LSTMs and used it both as a vector-to-sequence model and as a sequence-to-sequence model.

At this point, you should feel confident explaining the motivation behind memory in RNNs founded in the need for more robust models. You should feel comfortable coding your own recurrent network using Keras/TensorFlow. Furthermore, you should feel confident implementing both supervised and unsupervised recurrent networks.

LSTMs are great in encoding highly correlated spatial information, such as images, or audio, or text, just like CNNs. However, both CNNs and LSTMs learn very...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image