Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Deep Learning for Time Series Cookbook

You're reading from   Deep Learning for Time Series Cookbook Use PyTorch and Python recipes for forecasting, classification, and anomaly detection

Arrow left icon
Product type Paperback
Published in Mar 2024
Publisher Packt
ISBN-13 9781805129233
Length 274 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Luís Roque Luís Roque
Author Profile Icon Luís Roque
Luís Roque
Vitor Cerqueira Vitor Cerqueira
Author Profile Icon Vitor Cerqueira
Vitor Cerqueira
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. Chapter 1: Getting Started with Time Series FREE CHAPTER 2. Chapter 2: Getting Started with PyTorch 3. Chapter 3: Univariate Time Series Forecasting 4. Chapter 4: Forecasting with PyTorch Lightning 5. Chapter 5: Global Forecasting Models 6. Chapter 6: Advanced Deep Learning Architectures for Time Series Forecasting 7. Chapter 7: Probabilistic Time Series Forecasting 8. Chapter 8: Deep Learning for Time Series Classification 9. Chapter 9: Deep Learning for Time Series Anomaly Detection 10. Index 11. Other Books You May Enjoy

Creating a VAE for time series anomaly detection

Building on the foundation laid in the previous recipe, we now turn our attention to VAEs, a more sophisticated and probabilistic approach to anomaly detection in time series data. Unlike traditional AEs, VAEs introduce a probabilistic interpretation, making them more adept at handling inherent uncertainties in real-world data.

Getting ready

This code in this recipe is based on PyOD. We also use the same dataset as in the previous recipe:

N_LAGS = 144
series = dataset['y']

Now, let’s see how to create a VAE for time series anomaly detection.

How to do it…

We begin by preparing our dataset, as in the previous recipe:

  1. The dataset is first transformed using a sliding window, a technique that helps the model understand temporal dependencies within the time series:
    import pandas as pd
    from sklearn.preprocessing import StandardScaler
    import numpy as np
    input_data = []
    for i in range(N_LAGS, series...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image