Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Hands-On Image Generation with TensorFlow

You're reading from   Hands-On Image Generation with TensorFlow A practical guide to generating images and videos using deep learning

Arrow left icon
Product type Paperback
Published in Dec 2020
Publisher Packt
ISBN-13 9781838826789
Length 306 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Soon Yau Cheong Soon Yau Cheong
Author Profile Icon Soon Yau Cheong
Soon Yau Cheong
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. Section 1: Fundamentals of Image Generation with TensorFlow
2. Chapter 1: Getting Started with Image Generation Using TensorFlow FREE CHAPTER 3. Chapter 2: Variational Autoencoder 4. Chapter 3: Generative Adversarial Network 5. Section 2: Applications of Deep Generative Models
6. Chapter 4: Image-to-Image Translation 7. Chapter 5: Style Transfer 8. Chapter 6: AI Painter 9. Section 3: Advanced Deep Generative Techniques
10. Chapter 7: High Fidelity Face Generation 11. Chapter 8: Self-Attention for Image Generation 12. Chapter 9: Video Synthesis 13. Chapter 10: Road Ahead 14. Other Books You May Enjoy

Summary

Congratulations! We have now finished all the coding in this book. We have learned how to use dlib to detect faces and facial landmarks and how to use OpenCV to warp and align a face. We also learned how to use warping and masking to do face swapping. As a matter of fact, we spent most of the chapter learning about face image processing and spent very little time on the deep learning side. We have implemented autoencoders by reusing and modifying the autoencoder code from the previous chapter.

Finally, we went over an example of improving deepfake by using GANs. faceswap-GAN improves deepfake by adding a residual block, a self-attention block, and a discriminator for adversarial training, all of which we have already learned about in previous chapters.

In the next chapter, which is also the final chapter, we will review the techniques we have learned in this book and look at some of the pitfalls in training GANs for real-world applications. Then, we will go over a few...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image