Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Modern C++ Programming Cookbook

You're reading from   Modern C++ Programming Cookbook Recipes to explore data structure, multithreading, and networking in C++17

Arrow left icon
Product type Paperback
Published in May 2017
Publisher Packt
ISBN-13 9781786465184
Length 590 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Marius Bancila Marius Bancila
Author Profile Icon Marius Bancila
Marius Bancila
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Learning Modern Core Language Features FREE CHAPTER 2. Working with Numbers and Strings 3. Exploring Functions 4. Preprocessor and Compilation 5. Standard Library Containers, Algorithms, and Iterators 6. General Purpose Utilities 7. Working with Files and Streams 8. Leveraging Threading and Concurrency 9. Robustness and Performance 10. Implementing Patterns and Idioms 11. Exploring Testing Frameworks 12. Bibliography

Using unnamed namespaces instead of static globals

The larger a program the greater the chances are you could run into name collisions with file locals when your program is linked. Functions or variables that are declared in a source file and are supposed to be local to the translation unit may collide with other similar functions or variables declared in another translation unit. That is because all symbols that are not declared static have external linkage and their names must be unique throughout the program. The typical C solution for this problem is to declare those symbols static, changing their linkage from external to internal and therefore making them local to a translation unit. In this recipe, we will look at the C++ solution for this problem.

Getting ready

In this recipe, we will discuss concepts such as global functions, static functions, and variables, namespaces, and translation units. Apart from these, it is required that you understand the difference between internal and external linkage; that is key for this recipe.

How to do it...

When you are in a situation where you need to declare global symbols as statics to avoid linkage problems, prefer to use unnamed namespaces:

  1. Declare a namespace without a name in your source file.
  2. Put the definition of the global function or variable in the unnamed namespace without making them static.

The following example shows two functions called print() in two different translation units; each of them is defined in an unnamed namespace:

    // file1.cpp 
namespace
{
void print(std::string message)
{
std::cout << "[file1] " << message << std::endl;
}
}

void file1_run()
{
print("run");
}

// file2.cpp
namespace
{
void print(std::string message)
{
std::cout << "[file2] " << message << std::endl;
}
}

void file2_run()
{
print("run");
}

How it works...

When a function is declared in a translation unit, it has external linkage. That means two functions with the same name from two different translation units would generate a linkage error because it is not possible to have two symbols with the same name. The way this problem is solved in C, and by some in C++ also, is to declare the function or variable static and change its linkage from external to internal. In this case, its name is no longer exported outside the translation unit, and the linkage problem is avoided.

The proper solution in C++ is to use unnamed namespaces. When you define a namespace like the ones shown above, the compiler transforms it to the following:

    // file1.cpp 
namespace _unique_name_ {}
using namespace _unique_name_;
namespace _unique_name_
{
void print(std::string message)
{
std::cout << "[file1] " << message << std::endl;
}
}

void file1_run()
{
print("run");
}

First of all, it declares a namespace with a unique name (what the name is and how it generates that name is a compiler implementation detail and should not be a concern). At this point, the namespace is empty, and the purpose of this line is to basically establish the namespace. Second, a using directive brings everything from the _unique_name_ namespace into the current namespace. Third, the namespace, with the compiler-generated name, is defined as it was in the original source code (when it had no name).

By defining the translation unit local print() functions in an unnamed namespace, they have local visibility only, yet their external linkage no longer produces linkage errors since they now have external unique names.

Unnamed namespaces are also working in a perhaps more obscure situation involving templates. Template arguments cannot be names with internal linkage, so using static variables is not possible. On the other hand, symbols in an unnamed namespace have external linkage and can be used as template arguments. This problem is shown in the following example where declaring t1 produces a compiler error because the non-type argument expression has internal linkage. However, t2 is correct because Size2 has external linkage:

    template <int const& Size> 
class test {};

static int Size1 = 10;

namespace
{
int Size2 = 10;
}

test<Size1> t1;
test<Size2> t2;

See also

  • Using inline namespaces for symbol versioning
You have been reading a chapter from
Modern C++ Programming Cookbook
Published in: May 2017
Publisher: Packt
ISBN-13: 9781786465184
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image