Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Neural Networks with R

You're reading from   Neural Networks with R Build smart systems by implementing popular deep learning models in R

Arrow left icon
Product type Paperback
Published in Sep 2017
Publisher Packt
ISBN-13 9781788397872
Length 270 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Balaji Venkateswaran Balaji Venkateswaran
Author Profile Icon Balaji Venkateswaran
Balaji Venkateswaran
Giuseppe Ciaburro Giuseppe Ciaburro
Author Profile Icon Giuseppe Ciaburro
Giuseppe Ciaburro
Arrow right icon
View More author details
Toc

Table of Contents (8) Chapters Close

Preface 1. Neural Network and Artificial Intelligence Concepts FREE CHAPTER 2. Learning Process in Neural Networks 3. Deep Learning Using Multilayer Neural Networks 4. Perceptron Neural Network Modeling – Basic Models 5. Training and Visualizing a Neural Network in R 6. Recurrent and Convolutional Neural Networks 7. Use Cases of Neural Networks – Advanced Topics

Implementation using nnet() library

To improve our practice with the nnet library, we look at another example. This time we will use the data collected at a restaurant through customer interviews. The customers were asked to give a score to the following aspects: service, ambience, and food. They were also asked whether they would leave the tip on the basis of these scores. In this case, the number of inputs is 2 and the output is a categorical value (Tip=1 and No-tip=0).

The input file to be used is shown in the following table:

No

CustomerWillTip

Service

Ambience

Food

TipOrNo

1

1

4

4

5

Tip

2

1

6

4

4

Tip

3

1

5

2

4

Tip

4

1

6

5

5

Tip

5

1

6

3

4

Tip

6

1

3

4

5

Tip

7

1

5

5

5

Tip

8

1

5

4

4

Tip

9

1

7

6

4

Tip

10

1

7

6

4

Tip

11

1

6

7

2

Tip

12

1

5

6

4

Tip

13

1

7

3

3

Tip

14

1

5

1

4

Tip

15

1

7

5

5

Tip

16

0

3

1

3

No-tip

17

0

4

6

2

No-tip

18

0

2

5

2

No-tip

19

0

5

2

4

No-tip

20

0

4

1

3

No-tip

21

0

3

3

4

No-tip

22

0

3

4

5

No-tip

23

0

3

6

3

No-tip

24

0

4

4

2

No-tip

25

0

6

3

6

No-tip

26

0

3

6

3

No-tip

27

0

4

3

2

No-tip

28

0

3

5

2

No-tip

29

0

5

5

3

No-tip

30

0

1

3

2

No-tip

 

This is a classification problem with three inputs and one categorical output. We will address the problem with the following code:

######################################################################## 
##Chapter 1 - Introduction to Neural Networks - using R ################
###Simple R program to build, train and test neural networks ###########
### Classification based on 3 inputs and 1 categorical output ##########
########################################################################

###Choose the libraries to use
library(NeuralNetTools)
library(nnet)

###Set working directory for the training data
setwd("C:/R")
getwd()

###Read the input file
mydata=read.csv('RestaurantTips.csv',sep=",",header=TRUE)
mydata
attach(mydata)
names(mydata)

##Train the model based on output from input
model=nnet(CustomerWillTip~Service+Ambience+Food,
data=mydata,
size =5,
rang=0.1,
decay=5e-2,
maxit=5000)
print(model)
plotnet(model)
garson(model)

########################################################################

Let us go through the code line-by-line

To understand all the steps in the code just proposed, we will look at them in detail. First, the code snippet will be shown, and the explanation will follow.

library(NeuralNetTools)
library(nnet)

This includes the libraries NeuralNetTools and nnet() for our program.

###Set working directory for the training data
setwd("C:/R")
getwd()
###Read the input file
mydata=read.csv('RestaurantTips.csv',sep=",",header=TRUE)
mydata
attach(mydata)
names(mydata)

This sets the working directory and reads the input CSV file.

##Train the model based on output from input
model=nnet(CustomerWillTip~Service+Ambience+Food,
data=mydata,
size =5,
rang=0.1,
decay=5e-2,
maxit=5000)
print(model)

This calls the nnet() function with the arguments passed. The output is as follows. nnet() processes the forward and backpropagation until convergence:

> model=nnet(CustomerWillTip~Service+Ambience+Food,data=mydata, size =5, rang=0.1, decay=5e-2, maxit=5000)
# weights: 26
initial value 7.571002
iter 10 value 5.927044
iter 20 value 5.267425
iter 30 value 5.238099
iter 40 value 5.217199
iter 50 value 5.216688
final value 5.216665
converged

A brief description of the nnet package, extracted from the official documentation, is shown in the following table:

nnet-package: Feed-forward neural networks and multinomial log-linear models
Description:
Software for feed-forward neural networks with a single hidden layer, and for multinomial log-linear models.
Details:
Package: nnet
Type: Package
Version: 7.3-12
Date: 2016-02-02
License: GPL-2 | GPL-3
Author(s):
Brian Ripley
William Venables
Usage:
nnet(formula, data, weights,subset, na.action, contrasts = NULL)
Meaning of the arguments:
Formula: A formula of the form class ~ x1 + x2 + ...
data: Dataframe from which variables specified in formula are preferentially to be taken
weights: (Case) weights for each example; if missing, defaults to 1
subset: An index vector specifying the cases to be used in the training sample
na.action: A function to specify the action to be taken if NAs are found
contrasts: A list of contrasts to be used for some or all of the factors appearing as variables in the model formula

 

After giving a brief glimpse into the package documentation, let's review the remaining lines of the proposed in the following code sample:

print(model) 

This command prints the details of the net() as follows:

> print(model)
a 3-5-1 network with 26 weights
inputs: Service Ambience Food
output(s): CustomerWillTip
options were - decay=0.05

To plot the model, use the following command:

plotnet(model)

The plot of the model is as follows; there are five nodes in the single hidden layer:

Using NeuralNetTools, it's possible to obtain the relative importance of input variables in neural networks using garson algorithm:

garson(model)

This command prints the various input parameters and their importance to the output prediction, as shown in the following figure:

From the chart obtained from the application of the Garson algorithm, it is possible to note that, in the decision to give the tip, the service received by the customers has the greater influence.

We have seen two neural network libraries in R and used them in simple examples. We would deep dive with several practical use cases throughout this book.

You have been reading a chapter from
Neural Networks with R
Published in: Sep 2017
Publisher: Packt
ISBN-13: 9781788397872
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image